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BackgroundBackground

Concurrent access to shared data may result in data 
inconsistency
Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes
Suppose that we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. We 
can do so by having an integer count that keeps track of
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can do so by having an integer count that keeps track of 
the number of full buffers.  Initially, count is set to 0. It is 
incremented by the producer after it produces a new 
buffer and is decremented by the consumer after it 
consumes a buffer.

Producer Producer 

while (true) {

/*  produce an item and put in nextProduced  */
while (count == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
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buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}   

ConsumerConsumer

while (true)  {
while (count == 0)

; // do nothing
nextConsumed =  buffer[out];
out = (out + 1) % BUFFER_SIZE;

t
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count--;

/*  consume the item in nextConsumed
}

Race ConditionRace Condition

count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

count-- could be implemented as

register2 = count
register2 = register2 - 1

t i t 2
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count = register2
Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = count {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute count = register1 {count = 6 } 
S5: consumer execute count = register2 {count = 4}
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Solution to CriticalSolution to Critical--Section ProblemSection Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, 
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical section, 
then the selection of the processes that will enter the critical 
section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times 
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g
that other processes are allowed to enter their critical sections 
after a process has made a request to enter its critical section and 
before that request is granted

Assume that each process executes at a nonzero speed 
No assumption concerning relative speed of the N processes

Peterson’s SolutionPeterson’s Solution

Two process solution
Assume that the LOAD and STORE instructions are atomic; 
that is, cannot be interrupted.
The two processes share two variables:

int turn; 
Boolean flag[2]

The variable turn indicates whose turn it is to enter the
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The variable turn indicates whose turn it is to enter the 
critical section.  
The flag array is used to indicate if a process is ready to 
enter the critical section. flag[i] = true implies that process Pi
is ready!

Algorithm for Process Algorithm for Process PPii

while (true) {
flag[i] = TRUE;
turn = j;
while ( flag[j] && turn == j);

CRITICAL SECTION
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flag[i] = FALSE;

REMAINDER SECTION

}

Synchronization HardwareSynchronization Hardware

Many systems provide hardware support for critical section 
code
Uniprocessors – could disable interrupts

Currently running code would execute without 
preemption
Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable
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p g y g y
Modern machines provide special atomic hardware 
instructions

Atomic = non-interruptable
Either test memory word and set value
Or swap contents of two memory words

TestAndndSet Instruction TestAndndSet Instruction 

Definition:

boolean TestAndSet (boolean *target)
{

boolean rv = *target;
*t t TRUE
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*target = TRUE;
return rv:

}

Solution using TestAndSetSolution using TestAndSet

Shared boolean variable lock., initialized to false.
Solution:

while (true) {
while ( TestAndSet (&lock ))

;   /* do nothing
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//    critical section

lock = FALSE;

//      remainder section 

}
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Swap  InstructionSwap  Instruction

Definition:

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
* *b
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*a = *b;
*b = temp:

}

Solution using SwapSolution using Swap

Shared Boolean variable lock initialized to FALSE; Each 
process has a local Boolean variable key.
Solution:

while (true)  {
key = TRUE;
while ( key == TRUE)

Swap (&lock, &key );
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p ( , y );

//    critical section

lock = FALSE;

//      remainder section 

}

SemaphoreSemaphore

Synchronization tool that does not require busy waiting 
Semaphore S – integer variable
Two standard operations modify S: wait() and signal()

Originally called P() and V()
Less complicated
Can only be accessed via two indivisible (atomic) operations

wait (S) { 
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( ) {
while S <= 0

; // no-op
S--;

}
signal (S) { 

S++;
}

Semaphore as General Synchronization ToolSemaphore as General Synchronization Tool

Counting semaphore – integer value can range over an 
unrestricted domain
Binary semaphore – integer value can range only between 0 
and 1; can be simpler to implement

Also known as mutex locks
Can implement a counting semaphore S as a binary semaphore
P id t l l i
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Provides mutual exclusion
Semaphore S;    //  initialized to 1
wait (S);

Critical Section
signal (S);

Semaphore ImplementationSemaphore Implementation

Must guarantee that no two processes can execute wait () and 
signal () on the same semaphore at the same time
Thus, implementation becomes the critical section problem 
where the wait and signal code are placed in the crtical 
section.

Could now have busy waiting in critical section 
implementation
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p
But implementation code is short
Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical 
sections and therefore this is not a good solution.

Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting queue. 
Each entry in a waiting queue has two data items:

value (of type integer)
pointer to next record in the list

Two operations:
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Two operations:
block – place the process invoking the operation on the      
appropriate waiting queue.
wakeup – remove one of processes in the waiting queue 
and place it in the ready queue.
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Semaphore Implementation with no Busy waitingSemaphore Implementation with no Busy waiting (Cont.)(Cont.)

Implementation of wait:

wait (S){ 
value--;
if (value < 0) { 

add this process to waiting queue
block();  }

}
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}

Implementation of signal:

Signal (S){ 
value++;
if (value <= 0) { 

remove a process P from the waiting queue
wakeup(P);  }

}

Deadlock and StarvationDeadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes
Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);
wait (Q); wait (S);

. .
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. .

. .
signal  (S); signal (Q);
signal (Q); signal (S);

Starvation – indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended.

Classical Problems of SynchronizationClassical Problems of Synchronization

Bounded-Buffer Problem
Readers and Writers Problem
Dining-Philosophers Problem
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BoundedBounded--Buffer ProblemBuffer Problem

N buffers, each can hold one item
Semaphore mutex initialized to the value 1
Semaphore full initialized to the value 0
Semaphore empty initialized to the value N.
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Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

The structure of the producer process

while (true)  {

//   produce an item

wait (empty);
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( p y);
wait (mutex);

//  add the item to the  buffer

signal (mutex);
signal (full);

}

Bounded Buffer Problem (Cont.)Bounded Buffer Problem (Cont.)

The structure of the consumer process

while (true) {
wait (full);
wait (mutex);

// remove an item from buffer
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//  remove an item from  buffer

signal (mutex);
signal (empty);

//  consume the removed item

}
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ReadersReaders--Writers ProblemWriters Problem

A data set is shared among a number of concurrent processes
Readers – only read the data set; they do not perform any 
updates
Writers   – can both read and write.

Problem – allow multiple readers to read at the same time.  Only 
one single writer can access the shared data at the same time

6.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 8, 2005

one single writer can access the shared data at the same time.

Shared Data
Data set
Semaphore mutex initialized to 1.
Semaphore wrt initialized to 1.
Integer readcount initialized to 0.

ReadersReaders--Writers Problem (Cont.)Writers Problem (Cont.)

The structure of a writer process

while (true) {
wait (wrt) ;

//    writing is performed
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g p

signal (wrt) ;
}

ReadersReaders--Writers Problem (Cont.)Writers Problem (Cont.)

The structure of a reader process

while (true) {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)  wait (wrt) ;
signal (mutex)
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// reading is performed

wait (mutex) ;
readcount  - - ;
if (readcount  == 0)  signal (wrt) ;
signal (mutex) ;

}

DiningDining--Philosophers ProblemPhilosophers Problem
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Shared data 
Bowl of rice (data set)
Semaphore chopstick [5] initialized to 1

DiningDining--Philosophers Problem (Cont.)Philosophers Problem (Cont.)

The structure of Philosopher i:

While (true)  { 
wait ( chopstick[i] );
wait ( chopStick[ (i + 1) % 5] );

// t
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//  eat

signal ( chopstick[i] );
signal (chopstick[ (i + 1) % 5] );

//  think

}

Problems with SemaphoresProblems with Semaphores

Correct use of semaphore operations:

signal (mutex)  ….  wait (mutex)

wait (mutex)  …  wait (mutex)

O itti f it ( t ) i l ( t ) ( b th)
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Omitting  of wait (mutex) or signal (mutex) (or both)
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MonitorsMonitors

A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization
Only one process may be active within the monitor at a time

monitor monitor-name
{

// shared variable declarations
procedure P1 ( ) { }
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procedure P1 (…) { …. }
…

procedure Pn (…) {……}

Initialization code ( ….) { … }
…

}
}

Schematic view of a MonitorSchematic view of a Monitor
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Condition VariablesCondition Variables

condition x, y;

Two operations on a condition variable:
x.wait () – a process that invokes the operation is 

suspended.
x signal () resumes one of processes (if any) that
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x.signal () – resumes one of processes (if any) that
invoked x.wait ()

Monitor with Condition VariablesMonitor with Condition Variables
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Solution to Dining PhilosophersSolution to Dining Philosophers

monitor DP
{ 

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
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test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

Solution to Dining Philosophers (cont)Solution to Dining Philosophers (cont)

void test (int i) { 
if ( (state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;

}
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}
}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}
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Solution to Dining Philosophers (cont)Solution to Dining Philosophers (cont)

Each philosopher I invokes the operations pickup()
and putdown() in the following sequence:

dp.pickup (i)

EAT
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dp.putdown (i)

Monitor Implementation Using SemaphoresMonitor Implementation Using Semaphores

Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

Each procedure F will be replaced by

wait(mutex);
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…
body of F;

…
if (next-count > 0)

signal(next)
else 

signal(mutex);

Mutual exclusion within a monitor is ensured.

Monitor ImplementationMonitor Implementation

For each condition variable x, we  have:

semaphore x-sem; // (initially  = 0)
int x-count = 0;

The operation x.wait can be implemented as:

x-count++;
if (next count > 0)
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if (next-count > 0)
signal(next);

else
signal(mutex);

wait(x-sem);
x-count--;

Monitor ImplementationMonitor Implementation

The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;
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;
}

Synchronization ExamplesSynchronization Examples

Solaris
Windows XP
Linux
Pthreads
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Solaris SynchronizationSolaris Synchronization

Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and multiprocessing
Uses adaptive mutexes for efficiency when protecting data from 
short code segments
Uses condition variables and readers-writers locks when longer 
sections of code need access to data
Uses turnstiles to order the list of threads waiting to acquire either
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Uses turnstiles to order the list of threads waiting to acquire either 
an adaptive mutex or reader-writer lock
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Windows XP SynchronizationWindows XP Synchronization

Uses interrupt masks to protect access to global resources on 
uniprocessor systems
Uses spinlocks on multiprocessor systems
Also provides dispatcher objects which may act as either mutexes 
and semaphores
Dispatcher objects may also provide events

A t t h lik diti i bl

6.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 8, 2005

An event acts much like a condition variable

Linux SynchronizationLinux Synchronization

Linux:
disables interrupts to implement short critical sections

Linux provides:
semaphores
spin locks
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p

Pthreads SynchronizationPthreads Synchronization

Pthreads API is OS-independent
It provides:

mutex locks
condition variables

Non-portable extensions include:
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Non portable extensions include:
read-write locks
spin locks

Atomic TransactionsAtomic Transactions

System Model
Log-based Recovery
Checkpoints
Concurrent Atomic Transactions
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System ModelSystem Model

Assures that operations happen as a single logical unit of work, in 
its entirety, or not at all
Related to field of database systems
Challenge is assuring atomicity  despite computer system failures
Transaction - collection of instructions or operations that performs 
single logical function

6.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 8, 2005

Here we are concerned with changes to stable storage – disk
Transaction is series of read and write operations
Terminated by commit (transaction successful) or abort
(transaction failed) operation
Aborted transaction must be rolled back to undo any changes it 
performed

Types of Storage MediaTypes of Storage Media

Volatile storage – information stored here does not survive system 
crashes

Example:  main memory, cache
Nonvolatile storage – Information usually survives crashes

Example:  disk and tape
Stable storage – Information never lost
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Stable storage Information never lost
Not actually possible, so approximated via replication or RAID to 
devices with independent failure modes

Goal is to assure transaction atomicity where failures cause loss of 
information on volatile storage
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LogLog--Based RecoveryBased Recovery

Record to stable storage information about all modifications by a 
transaction
Most common is write-ahead logging

Log on stable storage, each log record describes single 
transaction write operation, including

Transaction name
D t it
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Data item name
Old value
New value

<Ti starts> written to log when transaction Ti starts
<Ti commits> written when Ti commits

Log entry must reach stable storage before operation on 
data occurs

LogLog--Based Recovery AlgorithmBased Recovery Algorithm

Using the log, system can handle any volatile memory errors
Undo(Ti) restores value of all data updated by Ti

Redo(Ti) sets values of all data in transaction Ti to new values
Undo(Ti) and redo(Ti) must be idempotent

Multiple executions must have the same result as one 
execution
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If system fails, restore state of all updated data via log
If log contains <Ti starts> without <Ti commits>, undo(Ti)
If log contains <Ti starts> and <Ti commits>, redo(Ti)

CheckpointsCheckpoints

Log could become long, and recovery could take long
Checkpoints shorten log and recovery time.
Checkpoint scheme:
1. Output all log records currently in volatile storage to stable 

storage
2. Output all modified data from volatile to stable storage
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3. Output a log record <checkpoint> to the log on stable storage
Now recovery only includes Ti, such that Ti started executing 
before the most recent checkpoint, and all transactions after Ti All 
other transactions already on stable storage

Concurrent TransactionsConcurrent Transactions

Must be equivalent to serial execution – serializability
Could perform all transactions in critical section

Inefficient, too restrictive
Concurrency-control algorithms provide serializability
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SerializabilitySerializability

Consider two data items A and B
Consider Transactions T0 and T1

Execute T0, T1 atomically
Execution sequence called schedule
Atomically executed transaction order called serial schedule
For N transactions, there are N! valid serial schedules
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,

Schedule 1: TSchedule 1: T00 then Tthen T11
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Nonserial ScheduleNonserial Schedule

Nonserial schedule allows overlapped execute
Resulting execution not necessarily incorrect

Consider schedule S, operations Oi, Oj

Conflict if access same data item, with at least one write
If Oi, Oj consecutive and operations of different transactions & Oi
and Oj don’t conflict
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Then S’ with swapped order Oj Oi equivalent to S
If S can become S’ via swapping nonconflicting operations

S is conflict serializable

Schedule 2: Concurrent Serializable ScheduleSchedule 2: Concurrent Serializable Schedule
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LockingLocking ProtocolProtocol

Ensure serializability by associating lock with each data item
Follow locking protocol for access control

Locks
Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q 
but not write Q
Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read 

d it Q
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and write Q
Require every transaction on item Q acquire appropriate lock
If lock already held, new request may have to wait

Similar to readers-writers algorithm

TwoTwo--phase Locking Protocolphase Locking Protocol

Generally ensures conflict serializability
Each transaction issues lock and unlock requests in two phases

Growing – obtaining locks
Shrinking – releasing locks

Does not prevent deadlock
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TimestampTimestamp--based Protocolsbased Protocols

Select order among transactions in advance – timestamp-ordering
Transaction Ti associated with timestamp TS(Ti) before Ti starts

TS(Ti) < TS(Tj) if Ti entered system before Tj

TS can be generated from system clock or as logical counter 
incremented at each entry of transaction

Timestamps determine serializability order
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If TS(Ti) < TS(Tj), system must ensure produced schedule 
equivalent to serial schedule where Ti appears before Tj

TimestampTimestamp--based Protocol Implementationbased Protocol Implementation

Data item Q gets two timestamps
W-timestamp(Q) – largest timestamp of any transaction that 
executed write(Q) successfully
R-timestamp(Q) – largest timestamp of successful read(Q)
Updated whenever read(Q) or write(Q) executed

Timestamp-ordering protocol assures any conflicting read and write
executed in timestamp order
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p
Suppose Ti executes read(Q)

If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that 
was already overwritten

read operation rejected and Ti rolled back
If TS(Ti) ≥ W-timestamp(Q)

read executed, R-timestamp(Q) set to max(R-
timestamp(Q), TS(Ti))
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TimestampTimestamp--ordering Protocolordering Protocol

Suppose Ti executes write(Q)
If TS(Ti) < R-timestamp(Q), value Q produced by Ti was 
needed previously and Ti assumed it would never be produced

Write operation rejected, Ti rolled back
If TS(Ti) < W-tiimestamp(Q), Ti attempting to write obsolete 
value of Q

W it ti j t d d T ll d b k
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Write operation rejected and Ti rolled back
Otherwise, write executed

Any rolled back transaction Ti is assigned new timestamp and 
restarted
Algorithm ensures conflict serializability and freedom from deadlock

Schedule Possible Under Timestamp ProtocolSchedule Possible Under Timestamp Protocol
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End of Chapter 6End of Chapter 6
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