
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 1

Software change 

Managing the processes of 
software system change 

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 2

Objectives
To explain different strategies for changing 
software systems
• Software maintenance
• Architectural evolution
• Software re-engineering

To explain the principles of software maintenance
To describe the transformation of legacy systems 
from centralised to distributed architectures

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 3

Topics covered
Program evolution dynamics
Software maintenance
Architectural evolution

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 4

Software change
Software change is inevitable
• New requirements emerge when the software is used
• The business environment changes
• Errors must be repaired
• New equipment must be accommodated
• The performance or reliability may have to be improved

A key problem for organisations is implementing 
and managing change to their legacy systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 5

Software change strategies
Software maintenance
• Changes are made in response to changed requirements but the 

fundamental software structure is stable

Architectural transformation
• The architecture of the system is modified generally from a 

centralised architecture to a distributed architecture

Software re-engineering
• No new functionality is added to the system but it is restructured 

and reorganised to facilitate future changes

These strategies may be applied separately or 
together

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 6

Program evolution dynamics is the study of the 
processes of system change
After major empirical study, Lehman and Belady
proposed that there were a number of ‘laws’
which applied to all systems as they evolved
There are sensible observations rather than laws. 
They are applicable to large systems developed 
by large organisations. Perhaps less applicable in 
other cases

Program evolution dynamics

RPL2 - Maintaining the System : Ir. I Gede Made Karma, MT 1



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 7

Lehman’s laws
Law Description
Continuing change A program that is used in a real-world environment

necessarily must change or become progressively less
useful in that environment.

Increasing complexity As an evolving program changes, its structure tends
to become more complex. Extra resources must be
devoted to preserving and simplifying the structure.

Large program evolution Program evolution is a self-regulating process.
System attributes such as size, time between releases
and the number of reported errors are approximately
invariant for each system release.

Organisational stability Over a program’s lifetime, its rate of development is
approximately constant and independent of the
resources devoted to system development.

Conservation of
familiarity

Over the lifetime of a system, the incremental change
in each release is approximately constant.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 8

Applicability of Lehman’s laws
This has not yet been established
They are generally applicable to large, tailored 
systems developed by large organisations
It is not clear how they should be modified for
• Shrink-wrapped software products
• Systems that incorporate a significant number of COTS 

components
• Small organisations
• Medium sized systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 9

Modifying a program after it has been put into 
use
Maintenance does not normally involve major 
changes to the system’s architecture
Changes are implemented by modifying existing 
components and adding new components to the 
system

Software maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 10

The system requirements are likely to change 
while the system is being developed because 
the environment is changing. Therefore a 
delivered system won't meet its requirements!
Systems are tightly coupled with their 
environment. When a system is installed in an 
environment it changes that environment and 
therefore changes the system requirements.
Systems MUST be maintained therefore if they 
are to remain useful in an environment

Maintenance is inevitable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 11

Maintenance to repair software faults
• Changing a system to correct deficiencies in the way meets 

its requirements

Maintenance to adapt software to a different 
operating environment
• Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation

Maintenance to add to or modify the system’s 
functionality
• Modifying the system to satisfy new requirements

Types of maintenance

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 12

Distribution of maintenance effort

Functionality
addition or

modification
(65%)

Fault repair
(17%)

Software
adaptation

(18%)

RPL2 - Maintaining the System : Ir. I Gede Made Karma, MT 2



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 13

Spiral maintenance model

Specification Implemention

ValidationOperation

Start

Release 1

Release 2

Release 3

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 14

Usually greater than development costs (2* to 
100* depending on the application)
Affected by both technical and non-technical 
factors
Increases as software is maintained. 
Maintenance corrupts the software structure so 
makes further maintenance more difficult.
Ageing software can have high support costs 
(e.g. old languages, compilers etc.)

Maintenance costs

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 15

Development/maintenance costs

0 50 100 150 200 250 300 350 400 450 500

System 1

System 2

Development costs Maintenance costs

$

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 16

Team stability
• Maintenance costs are reduced if the same staff are involved with 

them for some time

Contractual responsibility
• The developers of a system may have no contractual responsibility 

for maintenance so there is no incentive to design for future change

Staff skills
• Maintenance staff are often inexperienced and have limited domain 

knowledge

Program age and structure
• As programs age, their structure is degraded and they become 

harder to understand and change

Maintenance cost factors

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 17

Evolutionary software
Rather than think of separate development and 
maintenance phases, evolutionary software is 
software that is designed so that it can 
continuously evolve throughout its lifetime

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 18

The maintenance process

System release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Adaptive
maintenance

Corrective
maintenance

Perfective
maintenance

RPL2 - Maintaining the System : Ir. I Gede Made Karma, MT 3



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 19

Change requests
Change requests are requests for system changes 
from users, customers or management
In principle, all change requests should be 
carefully analysed as part of the maintenance 
process and then implemented
In practice, some change requests must be 
implemented urgently
• Fault repair
• Changes to the system’s environment
• Urgently required business changes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 20

Change implementation

Requirements
updating

Software
development

Requirements
analysis

Proposed
changes

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 21

Emergency repair

Modify
source code

Deliver modified
system

Analyze
source code

Change
requests

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 22

Maintenance prediction
Maintenance prediction is concerned with 
assessing which parts of the system may cause 
problems and have high maintenance costs
• Change acceptance depends on the maintainability of the 

components affected by the change
• Implementing changes degrades the system and reduces its 

maintainability
• Maintenance costs depend on the number of changes and costs 

of change depend on maintainability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 23

Maintenance prediction

Predicting
maintainability

Predicting system
changes

Predicting
maintenance

costs

What will be the lifetime
maintenance costs of this

system?

What will be the costs of
maintaining this system

over the next year?

What parts of the system
will be the most expensive

to maintain?

How many change
requests can be

expected?

What parts of the system are
most likely to be affected by

change requests?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 24

Change prediction
Predicting the number of changes requires and 
understanding of the relationships between a 
system and its environment
Tightly coupled systems require changes 
whenever the environment is changed
Factors influencing this relationship are
• Number and complexity of system interfaces
• Number of inherently volatile system requirements
• The business processes where the system is used

RPL2 - Maintaining the System : Ir. I Gede Made Karma, MT 4



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 25

Complexity metrics
Predictions of maintainability can be made by 
assessing the complexity of system components
Studies have shown that most maintenance effort 
is spent on a relatively small number of system 
components
Complexity depends on
• Complexity of control structures
• Complexity of data structures
• Procedure and module size 

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 26

Process metrics
Process measurements may be used to assess 
maintainability
• Number of requests for corrective maintenance
• Average time required for impact analysis
• Average time taken to implement a change request
• Number of outstanding change requests

If any or all of these is increasing, this may 
indicate a decline in maintainability

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 27

Architectural evolution
There is a need to convert many legacy systems 
from a centralised architecture to a client-server 
architecture
Change drivers
• Hardware costs. Servers are cheaper than mainframes
• User interface expectations. Users expect graphical user 

interfaces
• Distributed access to systems. Users wish to access the system 

from different, geographically separated, computers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 28

Distribution factors
Factor Description
Business
importance

Returns on the investment of distributing a legacy system
depend on it s importance to the business and how long it
will remain important. If distribution provides more efficient
support for stable business processes then it is more likely to
be a cost-effective evolution strategy.

System age The older the system the more difficult it will be to modify
its architecture because previous changes will have degraded
the structure of the system.

System structure The more modular the system, the easier it will be to change
the architecture. If the application log ic, the data
management and the user interface of the system are closely
intertwined, it will be difficult to separate functions for
migration.

Hardware
procurement
policies

Application distribution may be ne cessary if there is
company pol icy to replace expensive mainframe computers
with cheaper servers. .

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 29

Legacy system structure
Ideally, for distribution, there should be a clear 
separation between the user interface, the system 
services and the system data management
In practice, these are usually intermingled in older 
legacy systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 30

Legacy system structures

Database

User interface

Services

Ideal model for distribution Real legacy systems

Database

User interface

Services

RPL2 - Maintaining the System : Ir. I Gede Made Karma, MT 5



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 31

Layered distribution model

Database

Application services

Interaction control

Data validation

Presentation

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 32

Legacy system distribution

User interface

Application
services

Database

Character terminals

Legacy system

Desktop PC clients running application

Middleware layer (wrapper)

Legacy system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 33

Distribution options
The more that is distributed from the server to the 
client, the higher the costs of architectural 
evolution
The simplest distribution model is UI distribution 
where only the user interface is implemented on 
the server
The most complex option is where the server 
simply provides data management and application 
services are implemented on the client

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 34

Distribution option spectrum

Increasing cost
and effort

Server: Interaction control
Data validation
Services
Database

Client: Presentation

Server:Database
Server: Services

Database

Client: Presentation
Interaction control
Data validation

Client: Presentation
Interaction control
Data validation
Services

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 35

User interface distribution
UI distribution takes advantage of the local 
processing power on PCs to implement a 
graphical user interface
Where there is a clear separation between the UI 
and the application then the legacy system can be 
modified to distribute the UI
Otherwise, screen management middleware can 
translate text interfaces to graphical interfaces

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 36

User interface distribution

User interface

Application
services

Database

Desktop PC clients with
GUI interface

Screen management
middleware

Legacy system

Screen descriptions

RPL2 - Maintaining the System : Ir. I Gede Made Karma, MT 6



©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 37

UI migration strategies

Strategy Advantages Disadvantages
Implementation
using the window
management
system

Access to all UI functions so no
real restrictions on UI design
Better UI performance

Platform dependent
May be more difficult to achieve
interface consistency

Implementation
using a web
browser

Platform independent
Lower training costs due to user
familiarity with the WWW
Easier to achieve interface
consistency

Potentially poorer UI
performance
Interface design is constrained
by the facilities provided by web
browsers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 38

Key points
Software change strategies include software 
maintenance, architectural evolution and software 
re-engineering
Lehman’s Laws are invariant relationships that 
affect the evolution of a software system
Maintenance types are
• Maintenance for repair
• Maintenance for a new operating environment
• Maintenance to implement new requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 27 Slide 39

Key points
The costs of software change usually exceed the 
costs of software development
Factors influencing maintenance costs include staff 
stability, the nature of the development contract, 
skill shortages and degraded system structure
Architectural evolution is concerned with evolving 
centralised to distributed architectures
A distributed user interface can be supported using 
screen management middleware

RPL2 - Maintaining the System : Ir. I Gede Made Karma, MT 7


