
1/1/2009

1

Chapter 13

Improving
Predictions, Products,

ISBN 0-13-146913-4
Prentice-Hall, 2006

Processes, and
Resources

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Contents

13.1 Improving Prediction
13.2 Improving Products
13.3 Improving Processes
13.4 Improving Resources

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.2
© 2006 Pearson/Prentice Hall

13.5 General Improvement Guidelines
13.6 Information System Example
13.7 Real-Time Example
13.8 What this Chapter Means For You

Chapter 13 Objectives

• Improving predictions
• Improving products by using reuse and

inspections
• Improving processes by using cleanroom and

t it d l

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.3
© 2006 Pearson/Prentice Hall

maturity models
• Improving resources by investigating trade-

offs

13.1 Improving Prediction

• Need to have the predicted value be close to
the actual value

• Need to understand ways to improve the
prediction process

Reliability models and techniques

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.4
© 2006 Pearson/Prentice Hall

– Reliability models and techniques

13.1 Improving Prediction
Reliability Models

• The Jelinski-Moranda model (JM)
• The Goel-Okumoto model (GO)
• The Littlewood model (LM)
• Littlewood’s nonhomogenous Poisson

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.5
© 2006 Pearson/Prentice Hall

process model (LNHPP)
• The Duane model (DU)
• The Littlewood-Verrall model (LV)

13.1 Improving Prediction
Reliability Models Comparison

• Each model applied on the same dataset (the Musa dataset)
• Each model was used to generate 100 successive reliability

estimates

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.6
© 2006 Pearson/Prentice Hall

RPL2 - I Gede Made Karma

1/1/2009

2

13.1 Improving Prediction
Predictive Accuracy

• Predictions are biased when they are
consistently different from the actual value

• Predictions are noisy when successive
predictions fluctuate more wildly than the
actual value

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.7
© 2006 Pearson/Prentice Hall

actual value

13.1 Improving Prediction
Dealing with Bias

• Compare how often the observed times of
failure are less than the predicted ones

• When a given model predicts that the next
failure will occur at a particular time
– Record interfailure times; t1 to tn

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.8
© 2006 Pearson/Prentice Hall

; 1 n
– Compare the observed time with predicted time

(T1 trough Tn)
– Count the number of times that ti is less than Ti
– If the number is less than n/2, we have bias in our

prediction
• U-plots can help us understand and reduce

bias

13.1 Improving Prediction
The U-Plot: Steps

• Formally expressing bias by forming a
sequence of numbers {ui}
– ui is an estimate of the probability that ti is less

than Ti

• Calculating a distribution function for this

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.9
© 2006 Pearson/Prentice Hall

• Calculating a distribution function for this
data sequence, from which we calculate the u
values

• Constructing a graph called a u-plot

13.1 Improving Prediction
The U-Plot: Generating Ui Values

• Based on the Musa data

i ti

Predicted Mean Time
to ith failure ui

1 3
2 30 16.5 0.84
3 113 71 5 0 79

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.10
© 2006 Pearson/Prentice Hall

3 113 71.5 0.79
4 81 97 0.57
5 115 98 0.69
6 9 62 0.14
7 2 5.5 0.30
8 91 46.5 0.86
9 112 101.5 0.67

10 15 63.5 0.21

13.1 Improving Prediction
The U-Plot: Constructing The Graph

• Placing the ui values along the horizontal
axis

• Drawing a step function, where each step has
height 1/(n+1)
D i th li ith l 1

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.11
© 2006 Pearson/Prentice Hall

• Drawing the line with slope 1
• Comparing the line with the u-plot

– The difference represents the deviation between
prediction and actual

– The degree of deviation: Kolmogorov distance

13.1 Improving Prediction
The U-Plot

• Based on ui values from Musa data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.12
© 2006 Pearson/Prentice Hall

RPL2 - I Gede Made Karma

1/1/2009

3

13.1 Improving Prediction
The U-Plot Example

• Jelinski-Moranda and Littlewood-Verrall Models, the
Kolmogorov distance
– JM = 0.190, significant at 1% level
– LV = 0.144, significant at 5% level

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.13
© 2006 Pearson/Prentice Hall

13.1 Improving Prediction
Dealing with Noise

• The estimate values are very far from the
actual values, and fluctuate wildly
– A lot of noise in the prediction

• Unwarranted noise: actual reliability is not
fluctuating but the estimates are

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.14
© 2006 Pearson/Prentice Hall

fluctuating, but the estimates are
• Prequential likelihood helps reduce noise

13.1 Improving Prediction
Prequential Likelihood

• Allows us to compare the predictions from
two models
– Help to choose the most accurate model

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.15
© 2006 Pearson/Prentice Hall

13.1 Improving Prediction
Prequential Likelihood Calculation

i ti Ti Prequential Likelihood

3 113 16.5 6.43E-05
4 81 71.5 2.9E-07
5 115 97 9.13E-10
6 9 98 8.5E-12

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.16
© 2006 Pearson/Prentice Hall

7 2 62 1.33E-13
8 91 5.5 1.57E-21
9 112 46.5 3.04E-24
10 15 101.5 2.59E-26
11 138 63.5 4.64E-29
12 50 76.5 3.15E-31
13 77 94 1.48E-33

13.1 Improving Prediction
Prequential Likelihood Comparing Two Models

n
Prequential Likelihood

LNHPP:JM
10 1.28
20 2.21
30 2.54

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.17
© 2006 Pearson/Prentice Hall

40 4.55
50 2.14
60 4.15
70 66.0
80 1516
90 8647

100 6727

13.1 Improving Prediction
Recalibrating Prediction

• Models behave differently on different
datasets

• Results are different even on the same
dataset
R lib ti i th t d l ith ll

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.18
© 2006 Pearson/Prentice Hall

• Recalibrating is the way to deal with overall
inaccuracy

RPL2 - I Gede Made Karma

1/1/2009

4

13.1 Improving Prediction
Recalibrating Prediction Example

• Reliability prediction of several models, using
data from Musa SS3 data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.19
© 2006 Pearson/Prentice Hall

13.1 Improving Prediction
Recalibrating Prediction Example (continued)

• U-plots of models using data from Musa SS3
data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.20
© 2006 Pearson/Prentice Hall

13.1 Improving Prediction
Recalibrating Prediction Example (continued)

• U-plots for recalibrated models of Musa SS3
data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.21
© 2006 Pearson/Prentice Hall

13.1 Improving Prediction
Recalibrating Prediction Example (continued)

• Prediction of recalibrated models using data
from Musa SS3 data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.22
© 2006 Pearson/Prentice Hall

13.1 Improving Prediction
Benefits of Recalibrating

• Models in closer agreement than before
• New models with less bias than original ones

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.23
© 2006 Pearson/Prentice Hall

13.2 Improving Products

• Two product improvement strategies
– Inspections
– Reuse

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.24
© 2006 Pearson/Prentice Hall

RPL2 - I Gede Made Karma

1/1/2009

5

13.2 Improving Products
Inspections Metrics

• A set of nine measurements
– generated by business needs
– aimed at planning, monitoring, controlling, and

improving inspections
• Tell

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.25
© 2006 Pearson/Prentice Hall

• Tell
– whether the code quality is increasing as a result

of inspections
– how effective that staff is at preparing and

inspecting code

13.2 Improving Products
Code Inspections Statistic from AT&T

Measurements
First Sample

Project
Second Sample

Project
Number of inspections in sample 27 55

Total thousands of lines of code inspected 9.3 22.5

Average lines of code inspected (module size) 343 409

Average preparation rate (lines of code per 194 121 9

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.26
© 2006 Pearson/Prentice Hall

Average preparation rate (lines of code per
hour)

194 121.9

Average inspection rate (lines of code per hour) 172 154.8

Total faults detected (observed and
nonobserved) per thousands of lines of code

106 89.7

Percentage of reinspections 11 0.5

13.2 Improving Products
Sidebar 13.1 Monitoring Fault Injection and Detection

• Techniques for monitoring faults and
measuring inspection effectiveness
– Creating a fault database
– Track activities when the fault was injected into

product

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.27
© 2006 Pearson/Prentice Hall

product
– Calculate the yield of several review activities

13.2 Improving Products
Yield Calculation

Activity
Faults Injected

Fault
Found

Design
Inspection

Code Code
inspection

Compile Test Post-
development

Planning 0 2 2 2 2 2 2
Detailed design 0 2 4 5 5 6 6

Design inspection 4

Code 2 2 7 10 12

Code inspection 3

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.28
© 2006 Pearson/Prentice Hall

Compile 5

Test 4

Post development 2

TOTAL 20

Design inspection yield 4/4=100% 4/6=
67%

4/7=
57.1%

4/7=
57.1%

4/8=
50%

4/8=50%

Code inspection yield 3/5=60% 3/10=
30%

3/14=
25.5%

3/16=18.8%

Total yield 4/4=100% 6/6=
100%

9/9=
100%

9/14=
64.3%

9/16=
56.3%

9/20=45%

13.2 Improving Products
Projected vs. Actual Faults Found During Inspection
and Testing

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.29
© 2006 Pearson/Prentice Hall

13.2 Improving Products
Fault Density

• When fault density is lower than expected
– The inspections are not detecting all the faults

they should
– The design lacks sufficient content
– The project is smaller than planned

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.30
© 2006 Pearson/Prentice Hall

– Quality is better than expected
• If the fault density is higher than expected

– The product is larger than planned
– The inspections are doing a good job of detecting

fault
– The product quality is low

RPL2 - I Gede Made Karma

1/1/2009

6

13.2 Improving Products
Reuse

• At HP, Lim (1994) shows how reuse improves
quality
– Two case studies to determine whether reuse

actually reduces fault density
• Moller and Paulish (1993) investigated the

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.31
© 2006 Pearson/Prentice Hall

• Moller and Paulish (1993) investigated the
relationship involving fault density and reuse
at Siemens
– Be careful how much code we modify

13.2 Improving Products
Fault Density of New Code vs. Reused Code

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.32
© 2006 Pearson/Prentice Hall

13.3 Improving Processes

• Process and capability maturity
• Prototyping and Cleanroom

– Reduce maintenance time

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.33
© 2006 Pearson/Prentice Hall

13.3 Improving Processes
Process and Capability Maturity

• CMM
• ISO 9000
• SPICE

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.34
© 2006 Pearson/Prentice Hall

13.3 Improving Processes
Drawbacks of Process and Capability Maturity

• Process maturity questionnaires only capture
a small number of the characteristics of good
software practice

• Process maturity model assumes a
manufacturing paradigm for software

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.35
© 2006 Pearson/Prentice Hall

manufacturing paradigm for software
• Process maturity approach does not dig deep

enough into how software development
practices are implemented

13.3 Improving Processes
Benefits of Process and Capability Maturity

• Aggregate results from the SEI benefit study

Category Range Median

Total yearly cost of software process improvement
activities

$49,000 to $1,202,000 $245,000

Years engaged in software process improvement 1 to 9 3.5

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.36
© 2006 Pearson/Prentice Hall

Cost of software process improvement per engineer $490-$2,004 $1,375

Productivity gain per year 9-67% 35%

Early detection gain per year (faults discovered pretest) 6-25% 22%

Yearly reduction in time to market 15-23% 19%

Yearly reduction in postrelease fault reports 10-94% 39%

Business value of investment in software process
improvement (value returned on each dollar invested

4.0 to 8.8 5.0

RPL2 - I Gede Made Karma

1/1/2009

7

13.3 Improving Processes
Sidebar 13.2 Process Maturity and Increased Visibility

• The lowest level of visibility (akin to CMM
Level 1): the requirements are ill-defined

• The next higher level (similar to CMM level
2): the requirements are well-defined, but
process activities are not

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.37
© 2006 Pearson/Prentice Hall

process activities are not
• Higher level still (much like CMM level 3), the

process activities are clearly differentiated

13.3 Improving Processes
Maintenance

• Key questions in selecting maintenance
estimation techniques
– How can we quantitatively assess the maintenance

process?
– How can we use that assessment to improve the

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.38
© 2006 Pearson/Prentice Hall

How can we use that assessment to improve the
maintenance process?

– How do we quantitatively evaluate the
effectiveness of any process improvements?

13.3 Improving Processes
Maintenance (continued)

• Lesson learned from maintenance process
when evaluating improvement
– Use statistical techniques with care
– In some cases, process improvement must be very

dramatic if the quantitative effects are to show up

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.39
© 2006 Pearson/Prentice Hall

dramatic if the quantitative effects are to show up
in the statistical results

– Process improvement affects linear regression
results in different ways

13.3 Improving Processes
Sidebar 13.3 Is Capability Maturity Holding NASA Back?

• NASA’s space shuttle was built and is
maintained by a CMM level 5 organization

• Software is driven primarily by tables
– Before each launch, tables must be updated;

which is costly and time consuming

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.40
© 2006 Pearson/Prentice Hall

which is costly and time consuming
• Major change in the development process, in

part to overhaul the table-based approach
and make the system more flexible, may
result in a process that receives a lower CMM
rating

13.3 Improving Processes
Sidebar 13.4 Comparing Several Maintenance Estimation
Techniques

• Inductive logic programming models were
more accurate than
– top-down induction trees
– top-down induction attribute value rules
– covering algorithms

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.41
© 2006 Pearson/Prentice Hall

– covering algorithms

13.3 Improving Processes
Organization of Cleanroom Studies

• Controlled experiment comparing reading
with testing

• Controlled experiment comparing cleanroom
with cleanroom-plus-testing
C t d f l 3

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.42
© 2006 Pearson/Prentice Hall

• Case study of cleanroom on 3-person
development team and 2-person test team

• Case study on 4-person development team
and 2-person test team

• Case study on 14-person development team
and 4-person test team

RPL2 - I Gede Made Karma

1/1/2009

8

13.3 Improving Processes
Results of Reading vs. Testing Experiment 1

Reading
Functional

Testing
Structural
Testing

Mean number of faults detected 5.1 4.5 3.3

N b f f lt d t t d 3 3 1 8 1 8

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.43
© 2006 Pearson/Prentice Hall

Number of faults detected per
hour of use of technique

3.3 1.8 1.8

13.3 Improving Processes
Second Experiment Findings

• Cleanroom developers were more effective at doing offline
reading

• Cleanroom-plus-testing focused more on functional testing
than on reading

• Cleanroom teams spent less time online and were more likely
to meet their deadlines
Cleanroom products were less complex had more global data

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.44
© 2006 Pearson/Prentice Hall

• Cleanroom products were less complex, had more global data,
and had more comments

• Cleanroom products met the system requirements more
completely, and they had a higher percentage of successful
independent test cases

• Cleanroom developers did not apply the formal methods very
rigorously

• Almost all Cleanroom participants were willing to use
cleanroom again on another development project

13.3 Improving Processes
Results of SEL Case Studies

Baseline
Value

Cleanroom
Development

Traditional
Development

Lines of code per day 26 26 20

Ch th d li 20 1 5 4 13 7

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.45
© 2006 Pearson/Prentice Hall

Changes per thousand lines
of code

20.1 5.4 13.7

Faults per thousand lines of
code

7.0 3.3 6.0

13.4 Improving Resources

• Some resources are fixed, leaving no room
for improvement

• Other resources are highly variable
– Human resources

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.46
© 2006 Pearson/Prentice Hall

13.4 Improving Resources
Work Environment

• Giving people the environment they need to
do a good job
– acceptable work space
– tolerable noisy and quiet office

Considering the team size and

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.47
© 2006 Pearson/Prentice Hall

• Considering the team size and
communication path

• Emphasizing the importance of team “jell,”
where team members work smoothly,
coordinating their work and respecting each
other’s abilities

13.4 Improving Resources
Work Space for Developers Survey

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.48
© 2006 Pearson/Prentice Hall

RPL2 - I Gede Made Karma

1/1/2009

9

13.4 Improving Resources
Sidebar 13.5 Viewing Users as A Resource

• Reasons for the success of SSNS (Sale Service
Negotiation System) at Bell Atlantic
– its developers’ use of users as a resources
– performance issues were addressed by having the

user work side by side with the software

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.49
© 2006 Pearson/Prentice Hall

user work side by side with the software
engineers

13.4 Improving Resources
Cost and Schedule Trade-offs

• Trade-off between person-days and
schedule for two management policies

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.50
© 2006 Pearson/Prentice Hall

13.5 General Improvement Guidelines

• Are the goals the same?
• Are the priorities of the goals the same?
• Are the questions the same?
• Are the measurements the same?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.51
© 2006 Pearson/Prentice Hall

• Is the maturity the same?
• Is the process the same?
• Is the audience the same?

13.6 Information System Example
Piccadilly System

• Improvement strategies that Piccadilly
maintainers should follow
– Perform perfective maintenance
– Examine other similar software systems at

Piccadilly

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.52
© 2006 Pearson/Prentice Hall

Piccadilly

13.7 Real-Time Example
Ariane-5

• Several improvements have been suggested
– The team should perform a thorough

requirements review
– The team should do ground testing
– The guidance system’s precision should be

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.53
© 2006 Pearson/Prentice Hall

The guidance system s precision should be
demonstrated by analysis and computer
simulation

– Reviews should become a part of the design and
qualification process

13.8 What This Chapter Means for You

• Prediction can be improved by
– using u-plot
– prequential likelihood
– recalibration

• Products can be improved as part of a reuse
program or by instituting an inspection process

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.54
© 2006 Pearson/Prentice Hall

program or by instituting an inspection process
• Process can be improved by evaluating their effects

and determining relationships that lead to increased
quality and productivity

• There is promise of improvement in resource
allocation as we learn more about human variability
and examine the trade-offs between effort and
schedule

RPL2 - I Gede Made Karma

