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Chapter 13 Objectives

• Improving predictions
• Improving products by using reuse and 

inspections
• Improving processes by using cleanroom and 

t it d l
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maturity models
• Improving resources by investigating trade-

offs

13.1 Improving Prediction

• Need to have the predicted value be close to 
the actual value

• Need to understand ways to improve the 
prediction process

Reliability models and techniques
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– Reliability models and techniques

13.1 Improving Prediction
Reliability Models

• The Jelinski-Moranda model (JM)
• The Goel-Okumoto model (GO)
• The Littlewood model (LM)
• Littlewood’s nonhomogenous Poisson 
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process model (LNHPP)
• The Duane model (DU)
• The Littlewood-Verrall model (LV)

13.1 Improving Prediction
Reliability Models Comparison

• Each model applied on the same dataset (the Musa dataset) 
• Each model was used to generate 100 successive reliability 

estimates
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13.1 Improving Prediction 
Predictive Accuracy

• Predictions are biased when they are 
consistently different from the actual value

• Predictions are noisy when successive 
predictions fluctuate more wildly than the 
actual value
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actual value

13.1 Improving Prediction
Dealing with Bias

• Compare how often the observed times of 
failure are less than the predicted ones

• When a given model predicts that the next 
failure will occur at a particular time
– Record interfailure times; t1 to tn
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; 1 n 
– Compare the observed time with predicted time 

(T1 trough Tn) 
– Count the number of times that ti is less than Ti
– If the number is less than n/2, we have bias in our 

prediction
• U-plots can help us understand and reduce 

bias

13.1 Improving Prediction
The U-Plot: Steps

• Formally expressing bias by forming a 
sequence of numbers {ui} 
– ui is an estimate of the probability that ti is less 

than Ti

• Calculating a distribution function for this
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• Calculating a distribution function for this 
data sequence, from which we calculate the u
values

• Constructing a graph called a u-plot

13.1 Improving Prediction
The U-Plot:  Generating Ui Values

• Based on the Musa data

i ti

Predicted Mean Time 
to ith failure ui

1 3
2 30 16.5 0.84
3 113 71 5 0 79
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3 113 71.5 0.79
4 81 97 0.57
5 115 98 0.69
6 9 62 0.14
7 2 5.5 0.30
8 91 46.5 0.86
9 112 101.5 0.67

10 15 63.5 0.21

13.1 Improving Prediction
The U-Plot: Constructing The Graph

• Placing the ui values along the horizontal 
axis

• Drawing a step function, where each step has 
height 1/(n+1)
D i th li ith l 1
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• Drawing the line with slope 1
• Comparing the line with the u-plot

– The difference represents the deviation between 
prediction and actual

– The degree of deviation: Kolmogorov distance

13.1 Improving Prediction
The U-Plot

• Based on ui values from Musa data
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13.1 Improving Prediction
The U-Plot Example

• Jelinski-Moranda and Littlewood-Verrall Models, the 
Kolmogorov distance
– JM = 0.190, significant at 1% level
– LV = 0.144, significant at 5% level
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13.1 Improving Prediction
Dealing with Noise

• The estimate values are very far from the 
actual values, and fluctuate wildly
– A lot of noise in the prediction

• Unwarranted noise: actual reliability is not 
fluctuating but the estimates are
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fluctuating, but the estimates are
• Prequential likelihood helps reduce noise

13.1 Improving Prediction
Prequential Likelihood

• Allows us to compare the predictions from 
two models
– Help to choose the most accurate model
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13.1 Improving Prediction
Prequential Likelihood Calculation

i ti Ti Prequential Likelihood

3 113 16.5 6.43E-05
4 81 71.5 2.9E-07
5 115 97 9.13E-10
6 9 98 8.5E-12
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7 2 62 1.33E-13
8 91 5.5 1.57E-21
9 112 46.5 3.04E-24
10 15 101.5 2.59E-26
11 138 63.5 4.64E-29
12 50 76.5 3.15E-31
13 77 94 1.48E-33

13.1 Improving Prediction
Prequential Likelihood Comparing Two Models

n
Prequential Likelihood

LNHPP:JM
10 1.28
20 2.21
30 2.54
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40 4.55
50 2.14
60 4.15
70 66.0
80 1516
90 8647

100 6727

13.1 Improving Prediction
Recalibrating Prediction

• Models behave differently on different 
datasets

• Results are different even on the same 
dataset
R lib ti i th t d l ith ll
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• Recalibrating is the way to deal with overall 
inaccuracy
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13.1 Improving Prediction
Recalibrating Prediction Example

• Reliability prediction of several models, using 
data from Musa SS3 data
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13.1 Improving Prediction
Recalibrating Prediction Example (continued)

• U-plots of models using data from Musa SS3 
data
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13.1 Improving Prediction
Recalibrating Prediction Example (continued)

• U-plots for recalibrated models of Musa SS3 
data
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13.1 Improving Prediction
Recalibrating Prediction Example (continued)

• Prediction of recalibrated models using data 
from Musa SS3 data
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13.1 Improving Prediction
Benefits of Recalibrating

• Models in closer agreement than before
• New models with less bias than original ones
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13.2 Improving Products

• Two product improvement strategies
– Inspections
– Reuse
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13.2 Improving Products
Inspections Metrics

• A set of nine measurements 
– generated by business needs
– aimed at planning, monitoring, controlling, and 

improving inspections
• Tell
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• Tell 
– whether the code quality is increasing as a result 

of inspections
– how effective that staff is at preparing and 

inspecting code

13.2 Improving Products
Code Inspections Statistic from AT&T

Measurements
First Sample 

Project
Second Sample

Project
Number of inspections in sample 27 55

Total thousands of lines of code inspected 9.3 22.5

Average lines of code inspected (module size) 343 409

Average preparation rate (lines of code per 194 121 9
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Average preparation rate (lines of code per 
hour)

194 121.9

Average inspection rate (lines of code per hour) 172 154.8

Total faults detected (observed and
nonobserved) per thousands of lines of code

106 89.7

Percentage of reinspections 11 0.5

13.2 Improving Products
Sidebar 13.1 Monitoring Fault Injection and Detection

• Techniques for monitoring faults and 
measuring inspection effectiveness
– Creating a fault database
– Track activities when the fault was injected into 

product
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product
– Calculate the yield of several review activities

13.2 Improving Products
Yield Calculation

Activity
Faults Injected

Fault 
Found

Design 
Inspection

Code Code 
inspection

Compile Test Post-
development

Planning 0 2 2 2 2 2 2
Detailed design 0 2 4 5 5 6 6

Design inspection 4

Code 2 2 7 10 12

Code inspection 3
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Compile 5

Test 4

Post development 2

TOTAL 20

Design inspection yield 4/4=100% 4/6=
67%

4/7=
57.1%

4/7=
57.1%

4/8=
50%

4/8=50%

Code inspection yield 3/5=60% 3/10=
30%

3/14=
25.5%

3/16=18.8%

Total yield 4/4=100% 6/6=
100%

9/9=
100%

9/14=
64.3%

9/16=
56.3%

9/20=45%

13.2 Improving Products
Projected vs. Actual Faults Found During Inspection 
and Testing
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13.2 Improving Products
Fault Density

• When fault density is lower than expected
– The inspections are not detecting all the faults 

they should
– The design lacks sufficient content
– The project is smaller than planned
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– Quality is better than expected
• If the fault density is higher than expected

– The product is larger than planned
– The inspections are doing a good job of detecting 

fault
– The product quality is low
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13.2 Improving Products
Reuse

• At HP, Lim (1994) shows how reuse improves 
quality
– Two case studies to determine whether reuse 

actually reduces fault density
• Moller and Paulish (1993) investigated the
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• Moller and Paulish (1993) investigated the 
relationship involving fault density and reuse 
at Siemens
– Be careful how much code we modify

13.2 Improving Products
Fault Density of New Code vs. Reused Code
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13.3 Improving Processes

• Process and capability maturity
• Prototyping and Cleanroom

– Reduce maintenance time
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13.3 Improving Processes
Process and Capability Maturity

• CMM
• ISO 9000
• SPICE

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 13.34
© 2006 Pearson/Prentice Hall

13.3 Improving Processes
Drawbacks of Process and Capability Maturity

• Process maturity questionnaires only capture 
a small number of the characteristics of good 
software practice

• Process maturity model assumes a 
manufacturing paradigm for software
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manufacturing paradigm for software
• Process maturity approach does not dig deep 

enough into how software development 
practices are implemented

13.3 Improving Processes
Benefits of Process and Capability Maturity

• Aggregate results from the SEI benefit study

Category Range Median

Total yearly cost of software process improvement 
activities

$49,000 to $1,202,000 $245,000

Years engaged in software process improvement 1 to 9 3.5
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Cost of software process improvement per engineer $490-$2,004 $1,375

Productivity gain per year 9-67% 35%

Early detection gain per year (faults discovered pretest) 6-25% 22%

Yearly reduction in time to market 15-23% 19%

Yearly reduction in postrelease fault reports 10-94% 39%

Business value of investment in software process
improvement (value returned on each dollar invested

4.0 to 8.8 5.0
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13.3 Improving Processes
Sidebar 13.2 Process Maturity and Increased Visibility

• The lowest level of visibility (akin to CMM 
Level 1): the requirements are ill-defined

• The next higher level (similar to CMM level 
2): the requirements are well-defined, but 
process activities are not
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process activities are not
• Higher level still (much like CMM level 3), the 

process activities are clearly differentiated

13.3 Improving Processes
Maintenance

• Key questions in selecting maintenance 
estimation techniques
– How can we quantitatively assess the maintenance 

process?
– How can we use that assessment to improve the
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How can we use that assessment to improve the 
maintenance process?

– How do we quantitatively evaluate the 
effectiveness of any process improvements?

13.3 Improving Processes
Maintenance (continued)

• Lesson learned from maintenance process 
when evaluating improvement
– Use statistical techniques with care
– In some cases, process improvement must be very 

dramatic if the quantitative effects are to show up
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dramatic if the quantitative effects are to show up 
in the statistical results

– Process improvement affects linear regression 
results in different ways

13.3 Improving Processes
Sidebar 13.3 Is Capability Maturity Holding NASA Back?

• NASA’s space shuttle was built and is 
maintained by a CMM level 5 organization

• Software is driven primarily by tables
– Before each launch, tables must be updated; 

which is costly and time consuming
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which is costly and time consuming 
• Major change in the development process, in 

part to overhaul the table-based approach 
and make the system more flexible, may 
result in a process that receives a lower CMM 
rating

13.3 Improving Processes
Sidebar 13.4 Comparing Several Maintenance Estimation 
Techniques

• Inductive logic programming models were 
more accurate than
– top-down induction trees
– top-down induction attribute value rules
– covering algorithms
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– covering algorithms

13.3 Improving Processes
Organization of Cleanroom Studies

• Controlled experiment comparing reading 
with testing

• Controlled experiment comparing cleanroom 
with cleanroom-plus-testing
C t d f l 3
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• Case study of cleanroom on 3-person 
development team and 2-person test team

• Case study on 4-person development team 
and 2-person test team

• Case study on 14-person development team 
and 4-person test team
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13.3 Improving Processes
Results of Reading vs. Testing Experiment 1

Reading
Functional 

Testing
Structural 
Testing

Mean number of faults detected 5.1 4.5 3.3

N b f f lt d t t d 3 3 1 8 1 8
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Number of faults detected per
hour of use of technique

3.3 1.8 1.8

13.3 Improving Processes
Second Experiment Findings

• Cleanroom developers were more effective at doing offline 
reading

• Cleanroom-plus-testing focused more on functional testing 
than on reading

• Cleanroom teams spent less time online and were more likely 
to meet their deadlines
Cleanroom products were less complex had more global data
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• Cleanroom products were less complex, had more global data, 
and had more comments

• Cleanroom products met the system requirements more 
completely, and they had a higher percentage of successful 
independent test cases

• Cleanroom developers did not apply the formal methods very 
rigorously

• Almost all Cleanroom participants were willing to use 
cleanroom again on another development project

13.3 Improving Processes
Results of SEL Case Studies

Baseline 
Value

Cleanroom
Development

Traditional 
Development

Lines of code per day 26 26 20

Ch th d li 20 1 5 4 13 7
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Changes per thousand lines 
of code

20.1 5.4 13.7

Faults per thousand lines of 
code

7.0 3.3 6.0

13.4 Improving Resources

• Some resources are fixed, leaving no room 
for improvement

• Other resources are highly variable
– Human resources
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13.4 Improving Resources
Work Environment

• Giving people the environment they need to 
do a good job
– acceptable work space
– tolerable noisy and quiet office

Considering the team size and
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• Considering the team size and 
communication path

• Emphasizing the importance of team “jell,” 
where team members work smoothly, 
coordinating their work and respecting each 
other’s abilities

13.4 Improving Resources
Work Space for Developers Survey
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13.4 Improving Resources
Sidebar 13.5 Viewing Users as A Resource

• Reasons for the success of SSNS (Sale Service 
Negotiation System) at Bell Atlantic 
– its developers’ use of users as a resources
– performance issues were addressed by having the 

user work side by side with the software
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user work side by side with the software 
engineers

13.4 Improving Resources
Cost and Schedule Trade-offs

• Trade-off between person-days and 
schedule for two management policies
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13.5 General Improvement Guidelines

• Are the goals the same?
• Are the priorities of the goals the same?
• Are the questions the same?
• Are the measurements the same?
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• Is the maturity the same?
• Is the process the same?
• Is the audience the same?

13.6 Information System Example
Piccadilly System

• Improvement strategies that Piccadilly 
maintainers should follow
– Perform perfective maintenance
– Examine other similar software systems at 

Piccadilly
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Piccadilly

13.7 Real-Time Example
Ariane-5

• Several improvements have been suggested
– The team should perform a thorough 

requirements review
– The team should do ground testing
– The guidance system’s precision should be
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The guidance system s precision should be 
demonstrated by analysis and computer 
simulation

– Reviews should become a part of the design and 
qualification process

13.8 What This Chapter Means for You

• Prediction can be improved by
– using u-plot
– prequential likelihood
– recalibration

• Products can be improved as part of a reuse 
program or by instituting an inspection process
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program or by instituting an inspection process
• Process can be improved by evaluating their effects 

and determining relationships that lead to increased 
quality and productivity

• There is promise of improvement in resource 
allocation as we learn more about human variability 
and examine the trade-offs between effort and 
schedule
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