

Page 13.4

13.1 Improving Prediction **Reliability Models** • The Jelinski-Moranda model (JM) • The Goel–Okumoto model (GO) The Littlewood model (LM) Littlewood's nonhomogenous Poisson process model (LNHPP) • The Duane model (DU) • The Littlewood-Verrall model (LV)

13.1 Improving Prediction Predictive Accuracy

- Predictions are biased when they are consistently different from the actual value
- · Predictions are noisy when successive predictions fluctuate more wildly than the actual value

Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall

Page 13.7

13.1 Improving Prediction Prequential Likelihood	
Allows us to compare the prediction two models	s from
 Help to choose the most accurate mode 	I
Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall	Page 13.15

13.1 Im	iproving	g Predic	tion
Prequent	tial Likel	ihood Ca	Iculation
i	t,	Ti	

i	ti	T_i	Prequential Likelihood
3	113	16.5	6.43E-05
4	81	71.5	2.9E-07
5	115	97	9.13E-10
6	9	98	8.5E-12
7	2	62	1.33E-13
8	91	5.5	1.57E-21
9	112	46.5	3.04E-24
10	15	101.5	2.59E-26
11	138	63.5	4.64E-29
12	50	76.5	3.15E-31
13	77	94	1.48E-33
			•
Pfleeger and At	lee, Software Engl	<i>neering: Theory a</i> © 2006 Pearson/F	nd Practice Page 13.16 Prentice Hall

requential Li	kelihood Comparing Two	Model
	Prequential Likelihood	
n	LNHPP:JM	
10	1.28	
20	2.21	
30	2.54	
40	4.55	
50	2.14	
60	4.15	
70	66.0	
80	1516	
90	8647	
100	6727	

13.1 Improving Prediction Recalibrating Prediction	
Models behave differently on differ datasets	ent
 Results are different even on the sa dataset 	ame
 Recalibrating is the way to deal wit inaccuracy 	h overall
Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall	Page 13.18

13.2 Improving Products Inspections Metrics

- A set of nine measurements
 - generated by business needs
 aimed at planning, monitoring, controlling, and
 - improving inspections
- Tell
 - whether the code quality is increasing as a result of inspections

Page 13.25

- how effective that staff is at preparing and inspecting code

Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall

13.2 Improving Products Code Inspections Statistic from AT&T First Sample Second Sample Measurements Project Project Number of inspections in sample 55 Total thousands of lines of code inspected 9.3 22.5 Average lines of code inspected (module size) 343 409 Average preparation rate (lines of code per 194 121.9 hour) Average inspection rate (lines of code per hour) 154.8 89.7 Total faults detected (observed and 106 nonobserved) per thousands of lines of code Percentage of reinspections 11 0.5

Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall

13.2 Improving Products Yield Calculation

				Faults Injecte	d		
Activity	Fault Found	Design Inspection	Code	Code inspection	Compile	Test	Post- development
Planning	0	2	2	2	2	2	2
Detailed design	0	2	4	5	5	6	6
Design inspection	4						
Code	2			2	7	10	12
Code inspection	3						
Compile	5						
Test	4						
Post development	2						
TOTAL	20						
Design inspection yield		4/4=100%	4/6=	4/7=	4/7=	4/8=	4/8=50%
			67%	57.1%	57.1%	50%	
Code inspection yield				3/5=60%	3/10=	3/14=	3/16=18.8%
					30%	25.5%	
Total yield		4/4=100%	6/6=	9/9=	9/14=	9/16=	9/20=45%
			100%	100%	64.3%	56.3%	
Pfleeger and Atlee, Sol	ftware Eng	<i>ineering: The</i> © 2006 Pear	eory and son/Prei	Practice		P	Page 13.28

13.2 Improving Products Fault Density

- When fault density is lower than expected
 - The inspections are not detecting all the faults they should
 - The design lacks sufficient content
 - The project is smaller than planned
 - Quality is better than expected
- If the fault density is higher than expected
 - The product is larger than planned
 - The inspections are doing a good job of detecting fault
 - The product quality is low

```
Pfleeger and Atlee, Software Engineering: Theory and Practice
© 2006 Pearson/Prentice Hal
```

Page 13.30

13.2 Improving Products Reuse

- At HP, Lim (1994) shows how reuse improves quality
 - Two case studies to determine whether reuse actually reduces fault density
- Moller and Paulish (1993) investigated the relationship involving fault density and reuse at Siemens

Page 13.31

- Be careful how much code we modify

Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall

Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall Page 13.35

Page 13.37

 Higher level still (much like CMM level 3), the process activities are clearly differentiated

Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall 13.3 Improving Processes Maintenance
Key questions in selecting maintenance estimation techniques

How can we quantitatively assess the maintenance process?
How can we use that assessment to improve the maintenance process?
How do we quantitatively evaluate the effectiveness of any process improvements?

	Reading	Functional	Structura Testing
Mean number of faults detected	5.1	4.5	3.3
Number of faults detected per hour of use of technique	3.3	1.8	1.8

	Baseline	Cleanroom	Traditional
	Value	Development	Development
ines of code per day	26	26	20
Changes per thousand lines of code	20.1	5.4	13.7
aults per thousand lines of code	7.0	3.3	6.0

- Giving people the environment they need to do a good job

 acceptable work space
 - acceptable work space
- tolerable noisy and quiet officeConsidering the team size and
- communication path
- Emphasizing the importance of team "jell," where team members work smoothly, coordinating their work and respecting each other's abilities

13.7 Real-Time Example Ariane-5

- Several improvements have been suggested
 - The team should perform a thorough requirements review
 - The team should do ground testing
 - The guidance system's precision should be demonstrated by analysis and computer simulation
 - Reviews should become a part of the design and qualification process

Pfleeger and Atlee, Software Engineering: Theory and Practice © 2006 Pearson/Prentice Hall Page 13.53

