
12/12/2008

1

Chapter 12

Evaluating Products,
Processes, and

ISBN 0-13-146913-4
Prentice-Hall, 2006

Resources

Copyright 2006 Pearson/Prentice Hall. All rights reserved.

Contents

12.1 Approaches to Evaluation
12.2 Selecting an Evaluation Technique
12.3 Assessment vs. Prediction
12.4 Evaluating Products

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.2
© 2006 Pearson/Prentice Hall

12.5 Evaluating Processes
12.6 Evaluating Resources
12.7 Information System Example
12.8 Real-Time Example
12.9 What This Chapter Means for You

Chapter 12 Objectives

• Feature analysis, case studies, surveys, and
experiments

• Measurement and validation
• Capability maturity, ISO 9000, and other

d l

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.3
© 2006 Pearson/Prentice Hall

process models
• People maturity
• Evaluating development artifacts
• Return of investment

12.1 Approaches to Evaluation

• Measure key aspects of product, processes,
and resources

• Determine whether we have met goals for
productivity, performance, quality, and other
desire attributes

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.4
© 2006 Pearson/Prentice Hall

desire attributes

12.1 Approaches to Evaluation
Categories of Evaluation

• Feature analysis: rate and rank attributes
• Survey: document relationships
• Case studies
• Formal experiment

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.5
© 2006 Pearson/Prentice Hall

12.1 Approaches to Evaluation
Feature Analysis Example: Buying a Design Tool

• List five key attributes that the tool should
have

• Identify three possible tools and rate the
criterion
E i h i l

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.6
© 2006 Pearson/Prentice Hall

• Examine the scores, creating a total score
based on the importance of each criterion

• Based on the score, we select the highest
score (t-OO-1)

RPL 2 - I Gede Made Karma

12/12/2008

2

12.1 Approaches to Evaluation
Buying a Design Tool (continued)

• Design tool ratings

Features Tool 1:
T-OO-l

Tool 2:
ObjecTool

Tool 3:
EasyDesign

Importance

Good user interface 4 5 4 3

Object-oriented design 5 5 5 5

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.7
© 2006 Pearson/Prentice Hall

Object-oriented design 5 5 5 5

Consistency checking 5 3 1 3
Use cases 4 4 4 2
Runs on UNIX 5 4 5 5

Score 85 77 73

12.1 Approaches to Evaluation
Surveys

• Record data
– to determine how project participants reacted to a

particular method, tool, or technique
– to determine trends or relationships

• Capture information related to products or

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.8
© 2006 Pearson/Prentice Hall

• Capture information related to products or
projects

• Document the size of components, number
of faults, effort expended

12.1 Approaches to Evaluation
Case Studies

• Identify key factors that may affect an
activity’s outcome and then document them

• Involve sequence of steps: conception
hypothesis setting, design, preparation,
execution analysis dissemination and

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.9
© 2006 Pearson/Prentice Hall

execution, analysis, dissemination, and
decision making

• Compare one situation with another

12.1 Approaches to Evaluation
Case Study Types

• Sister projects: each is typical and has
similar values for the independent variables

• Baseline: compare single project to
organizational norm
R d l i i i i l j

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.10
© 2006 Pearson/Prentice Hall

• Random selection: partition single project
into parts

12.1 Approaches to Evaluation
Formal Experiment

• Controls variables
• Uses methods to reduce bias and eliminate

confounding factors
• Often replicated

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.11
© 2006 Pearson/Prentice Hall

• Instances are representative: sample over
the variables (whereas case study samples
from the variables)

12.1 Approaches to Evaluation
Evaluation Steps

• Setting the hypothesis: deciding what we
wish to investigate, expressed as a
hypothesis we want to test

• Maintaining control over variables: identify
variables that can affect the hypothesis, and

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.12
© 2006 Pearson/Prentice Hall

yp ,
decide how much control we have over the
variables

• Making investigation meaningful: the result
of formal experiment is more generalizable,
while a case study or survey only applies to
certain organization

RPL 2 - I Gede Made Karma

12/12/2008

3

12.2 Selecting An Evaluation Technique

• Formal experiments: research in the small
• Case studies: research in the typical
• Surveys: research in the large

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.13
© 2006 Pearson/Prentice Hall

12.2 Selecting An Evaluation Technique
Key Selection Factors

• Level of control over the variables
• Degree to which the task can be isolated

from the rest of the development process
• Degree to which we can replicate the basic

it ti

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.14
© 2006 Pearson/Prentice Hall

situation

12.2 Selecting An Evaluation Technique
What to Believe

• When results conflict, how do we know which
study to believe?
– Using series of questions, represented by the

game board
• How do you know if the result is valid?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.15
© 2006 Pearson/Prentice Hall

• How do you know if the result is valid?
– Evaluation pitfalls table

12.2 Selecting An Evaluation Technique
Investigation and Evaluation Board Game

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.16
© 2006 Pearson/Prentice Hall

12.2 Selecting An Evaluation Technique
Common Pitfalls in Investigation

Pitfall Description

1. Confounding Another factor is causing the effect

2. Cause or effect? The factor could be a result, not a cause, of the treatment

3. Chance There is always a small possibility that your result happened by
chance

4. Homogeneity You can find no link because all subjects had the same level of the
factor

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.17
© 2006 Pearson/Prentice Hall

factor
5. Misclassification You can find no link because you can not accurately classify each

subject’s level of the factor
6. Bias Selection procedures or administration of the study inadvertently

bias the result
7. Too short The short-term effects are different from the long-term ones
8. Wrong amount The factor would have had an effect, but not in the amount used in

the study
9. Wrong situation The factor has the desired effect, but not in the situation studied

12.3 Assessment vs. Prediction

• Assessment system examines an existing
entity by characterizing it numerically

• Prediction system predicts characteristic of
a future entity; involves a model with
associated prediction procedures

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.18
© 2006 Pearson/Prentice Hall

associated prediction procedures
– deterministic prediction (we always get the same

output for an input)
– stochastic prediction (output varies

probabilistically)

RPL 2 - I Gede Made Karma

12/12/2008

4

12.3 Assessment vs. Prediction
Validating Prediction System

• Comparing the model’s performance with
known data in the given environment

• Stating a hypothesis about the prediction,
and then looking at data to see whether the
hypothesis is supported or refuted

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.19
© 2006 Pearson/Prentice Hall

hypothesis is supported or refuted

12.3 Assessment vs. Prediction
Sidebar 12.1 Comparing Software Reliability Prediction

Modeling
techniques

Predictive
validity

Proportion
of false

negatives
(%)

Proportion
of false

positives
(%)

Proportion of
false

classifications
(%)

Completeness
(%)

Overall
Inspection

Wasted
Inspection

Discriminant
Analysis

p= 0.621 28 26 54 42 46 56

Principal
component
analysis plus
discriminant
analysis

p=0.408 15 41 56 68 74 55

Logistic p 0 491 28 28 56 42 49 58

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.20
© 2006 Pearson/Prentice Hall

Logistic
regression

p=0.491 28 28 56 42 49 58

Principal
component
analysis plus
logistic
regression

p=0.184 13 46 59 74 82 56

Logical
classification
model

p=0.643 26 21 46 47 44 47

Layered neural
network

p=0.421 28 28 56 42 49 58

Holographic
network

p=0.634 26 28 54 47 51 55

Heads or tails p=1.000 25 50 50 50 50 50

12.3 Assessment vs. Prediction
Validating Measures

• Assuring that the measure captures the
attribute properties it is supposed to
capture

• Demonstrating that the representation
condition holds for the measure and its

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.21
© 2006 Pearson/Prentice Hall

condition holds for the measure and its
corresponding attributes

12.3 Assessment vs. Prediction
Sidebar 12.2 Lines of Code and Cyclomatic Number

• The number of lines of code is a valid
measure of program size, however, it is not
a valid measure of complexity

• On the other hand, there are many studies
that exhibit a significant correlation

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.22
© 2006 Pearson/Prentice Hall

that exhibit a significant correlation
between lines of code and cyclomatic
number

12.3 Assessment vs. Prediction
A Stringent Requirement for Validation

• A measure (e.g., LOC) can be
– an attribute measure (e.g., program size)
– an input to a prediction system (e.g., predictor

of number of faults)
Do not reject a measure if it is not part of a

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.23
© 2006 Pearson/Prentice Hall

• Do not reject a measure if it is not part of a
prediction system
– If a measure is valid for assessment only, it is

called valid in the narrow
– If a measure is valid for assessment and useful

for prediction, it is called valid in the wide sense

12.4 Evaluating Products

• Examining a product to determine if it has
desirable attributes

• Asking whether a document, file, or system
has certain properties, such as
completeness consistency reliability or

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.24
© 2006 Pearson/Prentice Hall

completeness, consistency, reliability, or
maintainability
– Product quality models
– Establishing baselines and targets
– Software reusability

RPL 2 - I Gede Made Karma

12/12/2008

5

12.4 Evaluating Products
Product Quality Models

• Boehm’s model
• ISO 9126
• Dromey’s Model

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.25
© 2006 Pearson/Prentice Hall

12.4 Evaluating Products
Boehm’s Quality Model

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.26
© 2006 Pearson/Prentice Hall

12.4 Evaluating Products
Boehm’s Quality Model (continued)

• Reflects an understanding of quality where
the software
– does what the user wants it do
– uses computer resources correctly and efficiently
– is easy for the user to learn and use

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.27
© 2006 Pearson/Prentice Hall

– is easy for the user to learn and use
– is well-designed, well-coded, and easily tested

and maintained

12.4 Evaluating Products
ISO 9126 Quality Model

• A hierarchical model with six major
attributes contributing to quality
– Each right-hand characteristic is related only to

exactly one left-hand attribute

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.28
© 2006 Pearson/Prentice Hall

12.4 Evaluating Products
ISO 9126 Quality Model (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.29
© 2006 Pearson/Prentice Hall

12.4 Evaluating Products
ISO 9126 Quality Characteristics
Quality Characteristic Definition

Functionality A set of attributes that bears on the existence of a set of functions
and their specified properties. The functions are those that satisfy
stated or implied needs

Reliability A set of attributes that bears on the capability of software to
maintain its performance level under stated conditions for a stated
period of time

Usability A set of attributes that bears on the effort needed for use and on
h i di id l f h b d i li d f

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.30
© 2006 Pearson/Prentice Hall

the individual assessment of such use by a stated or implied set of
users

Efficiency A set of attributes that bears on the relationship between the
software performance and the amount of resources used under
stated conditions

Maintainability A set of attributes that bears on the effort needed to make specified
modifications (which may include corrections, improvements, or
adaptations of software to environmental changes and changes in
the requirements and functional specifications)

Portability A set of attributes that bears on the ability of software to be
transferred from one environment to another (including the
organizational, hardware, or software environment)

RPL 2 - I Gede Made Karma

12/12/2008

6

12.4 Evaluating Products
Dromey Quality Model

• Product quality depends on the tangible
properties of components and component
composition
– Correctness properties
– Internal properties

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.31
© 2006 Pearson/Prentice Hall

Internal properties
– Contextual properties
– Descriptive properties

12.4 Evaluating Products
Dromey Quality Model Attributes

• The six attributes of ISO 9126
• Attributes of reusability

– machine independence
– separability

fi bilit

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.32
© 2006 Pearson/Prentice Hall

– configurability
• Process maturity attributes

– client orientation
– well-definedness
– assurance
– effectiveness

12.4 Evaluating Products
Dromey Quality Model Framework

• Linking product properties to quality attributes

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.33
© 2006 Pearson/Prentice Hall

12.4 Evaluating Products
Dromey Quality Model Example

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.34
© 2006 Pearson/Prentice Hall

12.4 Evaluating Products
Dromey Quality Model Example (continued)

• The model is based on the following five
steps
– identify a set of high-level quality attributes
– identify product components
– identify and classify the most significant tangible

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.35
© 2006 Pearson/Prentice Hall

– identify and classify the most significant, tangible,
quality-carrying properties for each component

– propose a set of axioms for linking product
properties to quality attributes

– evaluate the model, identify its weaknesses, and
refine or recreate it

12.4 Evaluating Products
Establishing Baseline and Targets

• A baseline describes the usual or typical
result in an organization or category

• Baselines are useful for managing
expectations
A t t i i ti f b li

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.36
© 2006 Pearson/Prentice Hall

• A target is a variation of a baseline
– minimal acceptable behavior

RPL 2 - I Gede Made Karma

12/12/2008

7

12.4 Evaluating Products
Quantitative Targets For Managing US Defense Projects

Item Target Malpractice Level

Fault removal efficiency >95% <70%

Original fault density <4 per function point >7 per function point

Slip or cost overrun in
excess of risk reverse

0% >=10%

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.37
© 2006 Pearson/Prentice Hall

excess of risk reverse

Total requirements creep
(function points or
equivalent)

<1% per month average >= 50%

Total program
documentation

<3% pages per function
point

>6 pages per function
point

Staff turnover 1 to 3% per year >5% per year

12.4 Evaluating Products
Software Reusabilty

• Software reuse: the repeated use of any part
of a software system
– documentation
– code

design

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.38
© 2006 Pearson/Prentice Hall

– design
– requirements
– test cases
– test data

12.4 Evaluating Products
Type of Reuse

• Producer reuse: creating components for
someone else to use

• Consumer reuse: using components
developed for some other product

Bl k b i i h

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.39
© 2006 Pearson/Prentice Hall

– Black-box reuse: using component without
modification

– Clear- or white-box reuse: modifying
component before reusing it

12.4 Evaluating Products
Reuse Approaches

• Compositional reuse: uses components as
building blocks; development done from
bottom up

• Generative reuse: components designed
specifically for a domain; design is top

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.40
© 2006 Pearson/Prentice Hall

specifically for a domain; design is top-
down

• Domain analysis: identifies areas of
commonality that make a domain ripe for
reuse

12.4 Evaluating Products
Aspects of Reuse

Substance Scope Mode Technique Intention Product

Ideas and Vertical Planned and Compositional Black-box, Source Code
concepts Horizontal Systematic Generative as is Design

Artifacts and Ad hoc, Clear-box Requirements
components opportunistic modified Objects

Procedures, Data
kill d P

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.41
© 2006 Pearson/Prentice Hall

skills, and Processes
experience Documentation

Patterns Tests
Architecture

12.4 Evaluating Products
Reuse Technology

• Component classification: collection of
reusable components are organized and
catalogued according to a classification
scheme
– hierarchical

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.42
© 2006 Pearson/Prentice Hall

hierarchical
– faceted classification

RPL 2 - I Gede Made Karma

12/12/2008

8

12.4 Evaluating Products
Example of A Hierarchical Scheme

• New topic can be added easily at the lowest
level

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.43
© 2006 Pearson/Prentice Hall

12.4 Evaluating Products
Faceted Classification Scheme

• A facet is a kind of descriptor that helps to
identify the component

• Example of the facets of reusable code
– a application area

f ti

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.44
© 2006 Pearson/Prentice Hall

– a function
– an object
– a programming language
– an operating system

12.4 Evaluating Products
Component Retrieval

• A retrieval system or repository: an automated
library that can search for and retrieve a
component according to the user’s description

• A repository should address a problem of
conceptual closeness (values that are similar

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.45
© 2006 Pearson/Prentice Hall

conceptual closeness (values that are similar
to but not exactly the same as the desired
component)

• Retrieval system can
– record information about user requests
– retain descriptive information about the component

12.4 Evaluating Products
Sidebar 12.3 Measuring Reusability

• The measures must
– address a goal
– reflect perspective of the person asking the

question
• Even if we had a good list of measurements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.46
© 2006 Pearson/Prentice Hall

• Even if we had a good list of measurements,
still it is difficult to determine the
characteristic of the most reused component
– Look at past history
– Engineering judgment
– Automated repository

12.4 Evaluating Products
Experience with Reuse

• Raytheon
– A new system contained an average of 60% reused

code increasing productivity by 50%
• GTE Data Services

– Established incentives and rewards for program

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.47
© 2006 Pearson/Prentice Hall

authors whenever their components were reused
– 14% reuse on its project, valued at a savings of $1.5

million
• Nippon Novel

– Paid 5 cents per line of code to a developer who
reused a component

12.4 Evaluating Products
Sidebar 12.4 Software Reuse at Japan’s Mainframe
Makers

• NEC: reuse library was established to classify,
catalog, and document

• Hitachi: integrated software environment,
called Eagle, to allow software engineers to
reuse standard program patterns and

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.48
© 2006 Pearson/Prentice Hall

reuse standard program patterns and
functional procedures

• Fujitsu: created Information Support Center
(ISC), that is a regular library staffed with
system analysts, software engineers, reuse
experts, and switching system domain experts

RPL 2 - I Gede Made Karma

12/12/2008

9

12.4 Evaluating Products
Benefits of Reuse

• Reuse increases productivity and quality
• Reusing component may increase performance

and reliability
• A long term benefit is improved system

i t bilit

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.49
© 2006 Pearson/Prentice Hall

interoperability

12.4 Evaluating Products
Example of Reuse Success

• Quality, productivity, and time to market at
HP
Project Characteristics HP Project 1 HP Project 2

Size 1100 noncommented
source statements

700 noncommented
source statements

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.50
© 2006 Pearson/Prentice Hall

Quality 51% fault reduction 24% fault reduction

Productivity 57% increase 40% increase

Time to market Data not available 42% reduction

12.4 Evaluating Products
Example of Cost of Reuse

• Cost to produce and reuse at HP

Air traffic control
system

(%)

Menu- and forms
Management system

(%)

Graphics
Firmware (%)

Relative cost to create
R bl d

200 120 to 480 111

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.51
© 2006 Pearson/Prentice Hall

Reusable code

Relative cost to reuse 10 to 20 10 to 63 19

12.4 Evaluating Products
Sidebar 12.5 Critical Reuse Success Factors at NTT

• Success factors at NTT in implementing
reuse
– senior management commitment
– selecting appropriate target domains
– systematic development of reusable modules

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.52
© 2006 Pearson/Prentice Hall

– systematic development of reusable modules
based on domain analysis

– investing several years of continuous effort in
reuse

12.4 Evaluating Products
Reuse Lessons

• Reuse goals should be measurable
• Management should resolve reuse goals early
• Different perspectives may generate different

questions about reuse
• Every organization must decide at what level

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.53
© 2006 Pearson/Prentice Hall

• Every organization must decide at what level
to answer reuse questions

• Integrate the reuse process into the
development process

• Let your business goals suggest what to
measure

12.4 Evaluating Products
Conflicting Interpretation of Goals

• A division manager’s reuse goal may conflict with a
project manager’s goal, so no reuse ever gets done

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.54
© 2006 Pearson/Prentice Hall

RPL 2 - I Gede Made Karma

12/12/2008

10

12.4 Evaluating Products
Questions for Successful Reuse

• Do you have the right model of reuse?
• What are the criteria for success?
• How can current cost models be adjusted to

look at collections of projects, not just single
projects?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.55
© 2006 Pearson/Prentice Hall

projects?
• How do regular notions of accounting fit with

reuse?
• Who is responsible for component quality?
• Who is responsible for process quality and

maintenance?

12.5 Evaluating Process
Postmortem Analysis

• A postimplementation assessment of all
aspects of the project, including products,
process, and resources, intended to identify
areas of improvement for future projects
Takes places shortly after a project is

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.56
© 2006 Pearson/Prentice Hall

• Takes places shortly after a project is
completed, or can take place at any time
from just before delivery to 12 months
afterward

12.5 Evaluating Process
When Postimplemlentaion Evaluation Is Done

Time period
Percentage of Respondents

(of 92 organizations)
Just before delivery 27.8
At delivery 4.2
One month after delivery 22.2

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.57
© 2006 Pearson/Prentice Hall

Two months after delivery 6.9
Three months after delivery 18.1
Four months after delivery 1.4
Five months after delivery 1.4
Six months after delivery 13.9
Twelve months after delivery 4.2

12.5 Evaluating Process
Sidebar 12.6 How Many Organizations Perform
Postmortem Analysis
• Kumar (1990) surveyed 462 medium-sized

organizations
– 92 organizations that responded, more than

one-fifth did no postmortem analysis
– those that did postmortems were conducted on

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.58
© 2006 Pearson/Prentice Hall

those that did, postmortems were conducted on
fewer than half of the projects in the
organization

12.5 Evaluating Process
Postmortem Analysis Process

• Design and promulgate a project survey to
collect relevant data

• Collect objective project information
• Conduct a debriefing meeting

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.59
© 2006 Pearson/Prentice Hall

• Conduct a project history day
• Publish the results by focusing on lessons

learned

12.5 Evaluating Process
Postmortem Analysis Process: Survey

• A starting point to collect data that cuts
across the interests of project team
members

• Three guiding principles
D k f h d

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.60
© 2006 Pearson/Prentice Hall

– Do not ask for more than you need
– Do not ask leading questions
– Preserve anonymity

• Sample questions shown in Sidebar 12.7

RPL 2 - I Gede Made Karma

12/12/2008

11

12.5 Evaluating Process
Sidebar 12.7 Sample Survey Questions From Wildfire
Survey
• Were interdivisional lines of responsibility clearly

defined throughout the project?
• Did project-related meetings make effective use of

your time?
• Were you empowered to participate in discussion

regarding issues that affected your work?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.61
© 2006 Pearson/Prentice Hall

• Did schedule changes and related decisions involve
the right people?

• Was project definition done by the appropriate
individuals?

• Was the build process effective for the component
area you worked on?

• What is your primary function on this project?

12.5 Evaluating Process
Postmortem Analysis Process: Objective
Information
• Obtain objective information to complement

the survey opinions
• Collier, Demarco, and Fearey suggest three

kinds of measurements: cost, schedule, and
quality

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.62
© 2006 Pearson/Prentice Hall

quality
– Cost measurements might include

• person-months of effort
• total lines of code
• number of lines of code changed or added
• number of interfaces

12.5 Evaluating Process
Postmortem Analysis Process: Debriefing
Meeting
• Allows team members to report what did

and did not go well on the project
• Project leader can probe more deeply to

identify the root cause of positive and
negative effects

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.63
© 2006 Pearson/Prentice Hall

negative effects
• Some team members may raise issues not

covered in the survey questions
• Debriefing meetings should be loosely

structured

12.5 Evaluating Process
Postmortem Analysis Process: Project History
Day
• Objective: identify the root causes of the

key problems
• Involves a limited number of participants

who know something about key problems
R i h d l di bili h

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.64
© 2006 Pearson/Prentice Hall

• Review schedule predictability charts
– Show where problems occurred
– Spark discussion about possible causes of each

problem

12.5 Evaluating Process
Postmortem Analysis Process: Schedule-
Predictability Charts
• For each key project milestone, the chart

shows when the predictions was made
compared with the completion date

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.65
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
Postmortem Analysis Process: Publish Results

• Objective: Share results with the project
team

• Participants in the project history day write
a letter to managers, peers, developers
Th l h f

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.66
© 2006 Pearson/Prentice Hall

• The letter has four parts
– Introduction to the project
– A summary of postmortem’s positive findings
– A summary of three worst factors that kept the

team from meeting its goals
– Suggestions for improvement activities

RPL 2 - I Gede Made Karma

12/12/2008

12

12.5 Evaluating Process
Process Maturity Models

• Capability Maturity Model (CMM)
• Software Process Improvement and

Capability dEtermination (SPICE)
• ISO 9000

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.67
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
Capability Maturity Model

• Developed by Software Engineering Institute
• There are five levels of maturity
• Each level is associated with a set of key

process areas

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.68
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
CMM Levels of Maturity

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.69
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
CMM Maturity Levels

• Level 1: Initial
• Level 2: Repeatable
• Level 3: Defined
• Level 4: Managed

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.70
© 2006 Pearson/Prentice Hall

• Level 5: Optimizing

12.5 Evaluating Process
CMM Level 1

• Initial: describes a software development
process that is ad hoc or even chaotic

• It is difficult even to write down or depict
the overall process
N k hi l l

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.71
© 2006 Pearson/Prentice Hall

• No key process areas at this level

12.5 Evaluating Process
Required Questions for Level 1 of The Process
Maturity Model
Question number Question

1.1.3 Does the software quality assurance function have a management reporting channel
separate from the software development project management?

1.1.6 Is there a software configuration control function for each project that involves
software development?

2.1.3 Is a formal process used in the management review of each software development
prior to making contractual commitments?

2.1.14 Is a formal procedure used to make estimates of software size?

2 1 15 Is a formal procedure used to produce software development schedules?

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.72
© 2006 Pearson/Prentice Hall

2.1.15 Is a formal procedure used to produce software development schedules?

2.1.16 Are formal procedures applied to estimating software development cost?

2.2.2 Are profiles of software size maintained for each software configuration item over
time?

2.2.4 Are statistics on software code and test errors gathered?

2.4.1 Does senior management have a mechanism for the regular review of the status of
software development projects?

2.4.7 Do software development first-line managers sign off on their schedule and cost
estimates?

2.4.9 Is a mechanism used for controlling changes to the software requirements?

2.4.17 Is a mechanism used for controlling changes to the code?

RPL 2 - I Gede Made Karma

12/12/2008

13

12.5 Evaluating Process
Key Process Areas in The CMM

CMM Level Key Process Areas

Initial None
Repeatable Requirement Management

Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software Configuration management

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.73
© 2006 Pearson/Prentice Hall

Defined Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Intergroup coordination
Peer reviews

Managed Quantitative process management
Software quality management

Optimizing Fault prevention
Technology change management
Process change management

12.5 Evaluating Process
CMM Level 2

• Repeatable: identifying the inputs and
outputs of the process, the constraints, and
the resources used to produce final product

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.74
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
CMM Level 3

• Defined: management and engineering
activities are documented, standardized and
integrated

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.75
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
CMM Level 4

• Managed: process directs its effort at
product quality

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.76
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
CMM Level 5

• Optimizing: quantitative feedback is incorporated
in the process to produce continuous process
improvement

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.77
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
CMM Key Practices

• Commitment to perform
• Ability to perform
• Activities performed
• Measurement and analysis

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.78
© 2006 Pearson/Prentice Hall

• Verifying implementation

RPL 2 - I Gede Made Karma

12/12/2008

14

12.5 Evaluating Process
SPICE

• SPICE is intended to harmonize and extend
the existing approaches (e.g., CMM,
BOOTSTRAP)

• SPICE is recommended for process
improvement and capability determination

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.79
© 2006 Pearson/Prentice Hall

improvement and capability determination
• Two types of practices

– Base practices: essential activities of a specific
process

– Generic practices: institutionalization (implement
a process in a general way)

12.5 Evaluating Process
SPICE Architecture for Process Assessment

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.80
© 2006 Pearson/Prentice Hall

12.5 Evaluating Process
SPICE Functional View Activities/Processes

• Customer-supplied: processes that affect
the customer directly

• Engineering: processes that specify,
implement, or maintain the system

• Project: processes that establish the project

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.81
© 2006 Pearson/Prentice Hall

Project: processes that establish the project,
and coordinate and manage resources

• Support: processes that enable other
processes

• Organizational: processes that establish
business goals

12.5 Evaluating Process
SPICE Six Levels of Capability

• 0: Not performed – failure to perform
• 1: Performed informally: not planned and tracked
• 2: Planned and tracked: verified according to the

specified procedures
• 3: Well-defined: well-defined process using

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.82
© 2006 Pearson/Prentice Hall

3: Well defined: well defined process using
approved processes

• 4: Quantitatively controlled: detailed performance
measures

• 5: Continuously improved: quantitative targets for
effectiveness and efficiency based on business
goals

12.5 Evaluating Process
ISO 9000

• Produced by The International Standards
Organization (ISO)

• Standard 9001 is most applicable to the way
we develop and maintain software
U d l i l li d

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.83
© 2006 Pearson/Prentice Hall

• Used to regulate internal quality and to
ensure the quality suppliers

12.5 Evaluating Process
ISO 9001 Clauses
Clause number Subject matter

4.1 Management responsibility
4.2 Quality system
4.3 Contract review
4.4 Design control
4.5 Document and data control
4.6 Purchasing
4.7 Control of customer-supplied product
4.8 Product identification and traceability
4 9 Process control

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.84
© 2006 Pearson/Prentice Hall

4.9 Process control
4.10 Inspection and testing
4.11 Control of inspection, measuring, and test equipment
4,12 Inspection and test status
4,.13 Control of nonconforming product
4.14 Corrective and preventive action
4.15 Handling, storage, packaging, preservation, and delivery
4.16 Control of quality records
4,17 Internal quality audits
4.18 Training
4.19 Servicing
4.20 Statistical techniques

RPL 2 - I Gede Made Karma

12/12/2008

15

12.6 Evaluating Resources

• People Maturity Model
• Return on investment

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.85
© 2006 Pearson/Prentice Hall

12.6 Evaluating Resources
People Maturity Model

• Proposed by Curtis, Hefley, and Miller for
improving the knowledge and skills of the
workforce

• It has five levels
Initial

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.86
© 2006 Pearson/Prentice Hall

– Initial
– Repeatable
– Defined
– Managed
– Optimizing

12.6 Evaluating Resources
People Capability Maturity Model Levels

Level Focus Key Practices
5: Optimizing Continuous knowledge and

Skill improvements
Continuous workforce innovation
Coaching
Personal competency development

4: Managed Effectiveness measure and
managed, high-performance
teams developed

Organizational performance alignment
Organizational competency management
Team-based practice
Team building
Mentoring

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.87
© 2006 Pearson/Prentice Hall

3: Defined Competency-based workforce
practice

Participatory culture
Competency-based practices
Career development
Competency development
Workforce planning
Knowledge and skill analysis

2: Repeatable Management takes
responsibility for managing its
people

Compensation
Training
Performance management
Staffing
Communication
Work environment

1: Initial

12.6 Evaluating Resources
Return on investment
• Use net present value

– value today of predicted future cash flows
• Example:

C h fl CO S

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.88
© 2006 Pearson/Prentice Hall

Cash flows COTS Reuse
Initial investment -9000 -4000
Year 1 5000 -2000
Year 2 6000 2000
Year 3 7000 4500
Year 4 -4000 6000
Sum of all cash flows 5000 6500
NPV at 15% 2200 2162

12.6 Evaluating Resources
Sidebar 12.6 Return on Investment at Chase Manhattan

• RMS has increased customer calls by 33% and
improved profitability by 27%

• By protecting its old investments and
encouraging communication among
employees, Chase Manhattan accomplished

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.89
© 2006 Pearson/Prentice Hall

– avoid huge investments in new hardware
– provide more data more quickly to its service

representative
– achieved an admirable return on investment
– created cohesive teams that understand more

about Chase Manhattan’s business

12.7 Information System Example
Piccadilly System

• A postmortem analysis must review the
business as well as technology
– “Is this system good for business?”

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.90
© 2006 Pearson/Prentice Hall

RPL 2 - I Gede Made Karma

12/12/2008

16

12.8 Real-Time Example
Ariane-5

• A fine example of a postmortem analysis
– Focused on the obvious need to determine what

caused the fault that required exploding the
rocket

– Avoided blamed and complaint

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.91
© 2006 Pearson/Prentice Hall

p

12.11 What This Chapter Means For You

• There are several approaches to evaluation,
including feature analysis, surveys, case studies, and
formal experiments

• Measurement is essential for any evaluation
• It is important to understand the difference between

assessment and prediction

Pfleeger and Atlee, Software Engineering: Theory and Practice Page 12.92
© 2006 Pearson/Prentice Hall

assessment and prediction
• Product evaluation is usually based on a model of

the attributes of interest
• Process evaluation can be done in many ways
• Return-on-investment strategies helps us

understands whether business is benefiting from
investment in people, tools, and technology

RPL 2 - I Gede Made Karma

