
1

Manajemen Proyek SI

Oleh :
Ir. I Gede Made Karma, MT

Software Project Estimation*)

• Effective software project estimation is one of the
most challenging and important activities in
software development.

• Proper project planning and control is not possible
without a sound and reliable estimate.

*) Kathleen Peters, Software Productivity Centre Inc. (SPC) in Vancouver, British Columbia, Canada &
Simon Fraser University.

The four basic steps in software
project estimation are:

1. Estimate the size of the development product.
This generally ends up in either Lines of Code
(LOC) or Function Points (FP).

2. Estimate the effort in person-months or person-
hours.

3. Estimate the schedule in calendar months.
4. Estimate the project cost in dollars (or local

currency)

Estimating size

• An accurate estimate of the size of the software to be built is the first
step to an effective estimate.

• Your source(s) of information regarding the scope of the project
should, wherever possible, start with formal descriptions of the
requirements - for example, a customer’s requirements specification or
request for proposal, a system specification, a software requirements
specification.

• If you are [re-]estimating a project in later phases of the project’s
lifecycle, design documents can be used to provide additional detail.

• In any case, you must communicate the level of risk and uncertainty in
an estimate to all concerned and you must re-estimate the project as
soon as more scope information is determined.

Estimating size (2)

1. By analogy.
– Having done a similar project in the past and knowing

its size, you estimate each major piece of the new
project as a percentage of the size of a similar piece of
the previous project.

– Estimate the total size of the new project by adding up
the estimated sizes of each of the pieces.

– An experienced estimator can produce reasonably good
size estimates by analogy if accurate size values are
available for the previous project and if the new project
is sufficiently similar to the previous one.

Estimating size (3)

2. By counting product features and using an
algorithmic approach such as Function Points to
convert the count into an estimate of size.

– Macro-level “product features” may include the
number of subsystems, classes/modules,
methods/functions.

– More detailed “product features” may include the
number of screens, dialogs, files, database tables,
reports, messages, and so on.

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

2

Computing Function Points
Analyze information
domain of the
application
and develop counts

Weight each count by
assessing complexity

Assess influence of
global factors that affect
the application

Compute
function points

Establish count for input domain and
system interfaces

Assign level of complexity or weight
to each count

Grade significance of external factors, F
such as reuse, concurrency, OS, ...

degree of influence: N = Fi

complexity multiplier: C = (0.65 + 0.01 x N)

function points = (count x weight) x C
where:

i

Analyzing the Information
Domain

complexity multiplier

function points

number of user inputs

number of user outputs

number of user inquiries

number of files

number of ext.interfaces

measurement parameter

3

4

3

7

5

count
weighting factor

simple avg. complex

4

5

4

10

7

6

7

6

15

10

=

=

=

=

=

count-total

X

X

X

X

X

Taking Complexity into
Account

Factors are rated on a scale of 0 (not important)
to 5 (very important):

data communications
distributed functions
heavily used configuration
transaction rate
on-line data entry
end user efficiency

on-line update
complex processing
installation ease
operational ease
multiple sites
facilitate change

Rough Estimates of LOC/FP

Estimating effort

• Once you have an estimate of the size of your product, you can derive
the effort estimate.

• This conversion from software size to total project effort can only be
done if you have a defined software development lifecycle and
development process that you follow to specify, design, develop, and
test the software.

• A software development project involves far more than simply coding
the software – in fact, coding is often the smallest part of the overall
effort.

• Writing and reviewing documentation, implementing prototypes,
designing the deliverables, and reviewing and testing the code take up
the larger portion of overall project effort.

• The project effort estimate requires you to identify and estimate, and
then sum up all the activities you must perform to build a product of
the estimated size.

Estimating effort (2)

1. The best way is to use your organization’s own historical
data to determine how much effort previous projects of
the estimated size have taken. This, of course, assumes
a) your organization has been documenting actual results from

previous projects,
b) that you have at least one past project of similar size (it is even

better if you have several projects of similar size as this
reinforces that you consistently need a certain level of effort to
develop projects of a given size), and

c) that you will follow a similar development lifecycle, use a
similar development methodology, use similar tools, and use a
team with similar skills and experience for the new project.

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

3

Estimating effort (3)

2. If you don’t have historical data from your own
organization because you haven’t started collecting it yet
or because your new project is very different in one or
more key aspects,
• you can use a mature and generally accepted algorithmic

approach such as Barry Boehm’s COCOMO model or the
Putnam Methodology to convert a size estimate into an effort
estimate.

• These models have been derived by studying a significant
number of completed projects from various organizations to see
how their project sizes mapped into total project effort.

• These “industry data” models may not be as accurate as your
own historical data, but they can give you useful ballpark effort
estimates.

Example: LOC Approach

Functions

UICF

2DGA

3DGA

DSM

CGDF

PCF

DAM

Totals

estimated LOC $/LOC Cost Effort (months)LOC/pm

2340

5380

6800

3350

4950

2140

8400

33,360

14

20

20

18

22

28

18

315

220

220

240

200

140

300

32,000

107,000

136,000

60,000

109,000

60,000

151,000

655,000

7.4

24.4

30.9

13.9

24.7

15.2

28.0

145.0

Example: FP Approach

number of user inputs

number of user outputs

number of user inquiries

number of files

number of ext.interfaces

algorithms

measurement parameter

4

5

4

7

7

3

count

x

x

x

x

x

x

count-total

=

=

=

=

=

=

weight

complexity multiplier

feature points

0.25 p-m / FP = 120 p-m

40

25

12

4

4

60

160

125

48

28

28

180

569

.84

478

Empirical Estimation Models

General form:

effort = tuning coefficient * size
exponent

usually derived
as person-months
of effort required

either a constant or
a number derived based
on complexity of project

usually LOC but
may also be
function point

empirically
derived

Estimating schedule

• This generally involves estimating the number of people
who will work on the project, what they will work on (the
Work Breakdown Structure), when they will start working
on the project and when they will finish (this is the
“staffing profile”).

• Once you have this information, you need to lay it out into
a calendar schedule.

• Again, historical data from your organization’s past
projects or industry data models can be used to predict the
number of people you will need for a project of a given size
and how work can be broken down into a schedule.

Estimating schedule (2)

• If you have nothing else, a schedule estimation
rule of thumb [McConnell 1996] can be used to
get a rough idea of the total calendar time
required:

Schedule in months = 3.0 * (effort-months) 1/3

• Opinions vary as to whether 2.0 or 2.5 or even 4.0
should be used in place of the 3.0 value – only by
trying it out will you see what works for you.

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

4

Estimating Cost

• There are many factors to consider when
estimating the total cost of a project.

• These include labor, hardware and software
purchases or rentals, travel for meeting or testing
purposes, telecommunications (e.g., longdistance
phone calls, video-conferences, dedicated lines for
testing, etc.), training courses, office space, and so
on.

Estimating Cost (2)

• Exactly how you estimate total project cost will
depend on how your organization allocates costs.

• Some costs may not be allocated to individual
projects and may be taken care of by adding an
overhead value to labor rates ($ per hour).

• Often, a software development project manager
will only estimate the labor cost and identify any
additional project costs not considered “overhead”
by the organization.

Estimating Cost (3)

• The simplest labor cost can be obtained by multiplying the
project’s effort estimate (in hours) by a general labor rate
($ per hour).

• A more accurate labor cost would result from using a
specific labor rate for each staff position (e.g., Technical,
QA, Project Management, Documentation, Support, etc.).

• You would have to determine what percentage of total
project effort should be allocated to each position.

• Again, historical data or industry data models can help.

The Make-Buy Decision

system Xsystem X
reusereuse

simple (0.30)simple (0.30)

difficult (0.70)difficult (0.70)

minorminor changeschanges
(0.40)(0.40)

majormajor
changeschanges

(0.60)(0.60)

simple (0.20)simple (0.20)

complex (0.80)complex (0.80)

majormajor changeschanges (0.30)(0.30)

minorminor changeschanges
(0.70)(0.70)

$380,000$380,000

$450,000$450,000

$275,000$275,000

$310,000$310,000

$490,000$490,000

$210,000$210,000

$400,000$400,000

buybuy

contractcontract

without changes (0.60)without changes (0.60)

with changes (0.40)with changes (0.40)

$350,000$350,000

$500,000$500,000

buildbuild

Computing Expected Cost

(path probability) x (estimated path cost) i i

expected cost =

For example, the expected cost to build is:
expected cost = 0.30($380K)+0.70($450K)

similarly,
expected cost = $382K
expected cost = $267K
expected cost = $410K

build

reuse

buy

contr

= $429 K

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

5

Working Backwards from
Available Time

• Projects often have a delivery date specified for them that
isn’t negotiable –
– “The new release has to be out in 6 months”;
– “The customer’s new telephone switches go on-line in

12 months and our software has to be ready then”.
• If you already know how much time you have, the only

thing you can do is negotiate the set of functionality you
can implement in the time available.

• Since there is always more to do than time available,
functionality has to be prioritized and selected so that a
cohesive package of software can be delivered on time.

Working Backwards … (2)

• Working backwards doesn’t mean you skip any steps in
the basic estimation process outlined above.

• You still need to size the product, although here you really
do have to break it down into a number of pieces you can
either select or remove from the deliverable, and you still
need to estimate effort, schedule, and cost.

• This is where estimation tools can be really useful.
• Trying to fit a set of functionality into a fixed timeframe

requires a number of “what if” scenarios to be generated.
• To do this manually would take too much time and effort.

Some tools allow you to play with various options easily
and quickly.

Understanding an Estimate’s
Accuracy

• Whenever an estimate is generated, everyone wants to know
how close the numbers are to reality.

• The bottom line is that you won’t know exactly until you
finish the project – and you will have to live with some
uncertainty.

• Naturally, you will want every estimate to be as accurate as
possible given the data you have at the time you generate it.

• And of course you don’t want to present an estimate in a
way that inspires a false sense of confidence in the numbers.

Understanding an … (2)

• What do we mean by an “accurate” estimate? Accuracy is an
indication of how close something is to reality. Precision is an
indication of how finely something is measured.

• For example, a size estimate of 70 to 80 KLOC might be both
the most accurate and the most precise estimate you can make
at the end of the requirements specification phase of a project.

• If you simplify your size estimate to 75000 LOC it looks more
precise, but in reality it’s less accurate.

• If you offer the size estimate as 75281 LOC, it is precise to
one LOC but it can only be measured that accurately once the
coding phase of the project is completed and an actual LOC
count is done.

Understanding an … (3)

• If your accurate size estimate is a range, rather than a
single value, then all values calculated from it (e.g., effort,
schedule, cost) should be represented as a range as well.

• If, over the lifetime of a project, you make several
estimates as you specify the product in more detail, the
range should narrow and your estimate should approach
what will eventually be the actual cost values for the
product or system you are developing.

Understanding an … (4)

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

6

Understanding an … (5)

• Of course, you must also keep in mind other important
factors that affect the accuracy of your estimates, such as:
– the accuracy of all the estimate’s input data (the old adage, “Garbage

in, Garbage out”, holds true)
– the accuracy of any estimate calculations (e.g., converting between

Function Points and LOC has a certain margin of error)
– how closely the historical data or industry data used to calibrate the

model matches the project you are estimating
– the predictability of your organization’s software development

process, and
– whether or not the actual project was carefully planned, monitored

and controlled, and no major surprises occurred that caused
unexpected delays.

Understanding the Tradeoffs

• Once you’ve generated a project estimate, the real
work begins – finding some combination of
functionality, schedule, cost and staff size that can
be accepted by management and customers!

• This is where a solid understanding of the
relationships between these variables is so
important, and where being armed with different
project estimates illustrating the tradeoffs is very
useful for establishing what the limits are.

Understanding the Tradeoffs (2)

Here are a few facts of life you need to remember during the
estimate “adjustment” phase:

1. If you lengthen the schedule, you can generally reduce the overall
cost and use fewer people.
• Sometimes you only have to lengthen the schedule by a few

weeks to get a benefit.
• Usually management and customers don’t want a long delay,

but see how much “extra” might be acceptable.
• Many people don’t consider generating an estimate option that

lengthens the schedule to see what effect it has unless they are
driven to it in an attempt to reduce cost or staff size.

Understanding the Tradeoffs (3)

2. You can only shorten a schedule three ways.
• You can reduce the functionality (reducing the effort by doing

less),
• increase the number of concurrent staff (but only if there are

tasks you could now do in parallel to take advantage of this!),
or

• keep the number of staff constant but get them to work
overtime.

Understanding the Tradeoffs (4) Understanding the Tradeoffs (5)

3. There is a shortest possible schedule for any project and you have
to know what it is.
• You can only shrink

- a schedule so far given the functionality you are required to
implement,

- the minimum process you have to follow to develop and
test it, and

- the minimum level of quality you want in the output.
• Don’t even think of trying to beat that limit!

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

7

Understanding the Tradeoffs (6)

4. The shortest possible schedule may not be achievable by you.
• To achieve the shortest possible

- schedule your project team had better all be highly skilled
and experienced,

- your development process had better be well defined and
mature, and

- the project itself has to go perfectly.
• There are not many organizations that can hope to make the

shortest possible schedule, so it’s better not to aim for this.
• Instead, you need to determine what your shortest achievable

schedule is(also known as the “nominal” schedule).
• Data from past projects is your best source of information here.

Understanding the Tradeoffs (7)

5. Always keep in mind the accuracy of the estimate you are
attempting to adjust.

• If your schedule estimate is currently “5 to 7 months” then a
small change, for example 2 weeks, either way doesn’t mean
much yet.

• You can only adjust the schedule in increments that have some
significance given the accuracy of the estimate.

The Trouble with Estimates

• Estimating size is the most difficult (but not impossible)
step intellectually, and is often skipped in favor of going
directly to estimating a schedule.

• Customers and software developers often don’t really
recognize that software development is a process of
gradual refinement and that estimates made early in a
project lifecycle are “fuzzy”.

• Organizations often don’t collect and analyze historical
data on their performance on development projects.

• It is often difficult to get a realistic schedule accepted by
management and customers.

Maintenance & Enhancement
Projects vs. New Development

• When sizing new development for a maintenance project
you have to keep in mind that inserting this new
functionality will only be feasible if the product’s existing
architecture can accommodate it. If it cannot, the
maintenance effort must be increased to rework the
architecture.

• It’s tricky to attempt to size adaptation work in the same
manner as new work. An experienced individual
estimating maintenance effort by analogy is a more
common approach than attempting to size adaptation work
in LOC or Function Points and then converting size to
effort .

Maintenance & … (2)

• Estimation models that are calibrated to produce effort and
schedule estimates for new development projects assume
everything is created from scratch. This isn’t the case for
maintenance projects where you are modifying a certain
amount of existing documentation, code, test cases, etc.
Using these models may tend to over-estimate maintenance
projects.

• Often, maintenance work has fixed delivery dates (e.g., a
maintenance release every 6 months or once a year) and is
done by a fixed number of people (i.e., an allocated
maintenance team) so estimates have to deal with fitting
work into a fixed timeframe with a constant staffing level.

Estimating Small Projects

• Many people work on small projects, which are generally
defined as a staff size of one or two people and a schedule of
less than six months.
– Existing industry-data project estimation models are not calibrated

from small projects and so are of little or no use here unless they can
be adequately adjusted using an organization’s small project historical
data.

• Estimates for small projects are highly dependent on the
capabilities of the individual(s) performing the work and so
are best estimated directly by those assigned to do the work.
– An approach such as Watts Humphrey’s Personal Software Process

(PSP) [Humphrey 1995] is much more applicable for small project
estimation.

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

8

Estimating a “New Domain”
Project

• How do you estimate a project in a new application domain where no one
in your organization has any previous experience?

– If it’s a leading-edge (or “bleeding-edge”!) project, no one else has any
previous experience either.

– The first time you do something you are dealing with much more uncertainty
and there is no way out of it except to proceed with caution and manage the
project carefully.

– These projects are always high risk, and are generally under-estimated
regardless of the estimation process used [Vigder 1994].

– Knowing these two facts, you must
a. make the risks very clear to management and customers,
b. avoid making major commitments to fixed deadlines, and
c. re-estimate as you become more familiar with the domain and as you specify the

product in more detail.

Estimating a … (2)

• Selecting a project lifecycle which best accommodates the uncertainty
of new-domain projects is often a key step that is missing from the
development process.

– An iterative life cycle such as the Incremental Release Model where
delivery is done in pieces, or the Spiral Model where revisiting estimates
and risk assessment is done before proceeding into each new step, are
often better approaches than the more traditional Waterfall Model.

Some Estimating Tips

• Allow enough time to do a proper project estimate – rushed
estimates are inaccurate, high-risk estimates! For large
development projects, the estimation step should really be
regarded as a miniproject.

• Where possible, use documented data from your
organization’s own similar past projects. It will result in the
most accurate estimate. If your organization has not kept
historical data, now is a good time to start collecting it.

• Use developer-based estimates. Estimates prepared by people
other than those who will do the work will be less accurate.

Some Estimating Tips (2)

• Use at least one software estimation tool. Estimation tools
implement complex models that would take significant
time to learn to apply manually. They also make sure you
don’t forget anything, and allow you to tune an estimate
quickly and relatively painlessly.

• Use several different people to estimate and use several
different estimation techniques (using an estimation tool
should be considered as one of the techniques), and
compare the results.

Some Estimating Tips (3)

• Re-estimate the project several times throughout its lifecycle.
As you specify the product in more detail, your estimates
should begin to approach what you will actually use to
complete the project.

• Create a standardized estimation procedure that all involved
can and do buy into. That way you can’t argue about the
outputs, only the inputs, and your effort is spent productively
understanding the scope and cost drivers for the project.

• Focus some effort on improving your organization’s software
project estimation process. As each project is completed,
compare actuals to estimates – how well did you do in
predicting the project’s effort and schedule? What did you
miss? Where could you improve?

MPSI : Estimasi Usaha Proyek - Ir. I Gede Made Karma, MT

