
1

Oleh :

Ir. I Gede Made Karma, MT

Software Design

Design Concept and Principles
Structured Design
OO Design

A Design Note

one or more ”components"one or more ”components"
in the software designin the software designPSPECPSPEC

Analysis to Design

Entity-
Relationship

Diagram

Data Flow
Diagram

D t Di ti

Process Specification (PSPEC)Data Object Description procedural
design

interface

State-Transition
Diagram

Data Dictionary

Control Specification (CSPEC)

THE ANALYSIS MODEL

design

architectural
design

data
design

THE DESIGN MODEL

Design Process

An iterative process through which requirements
are translated into a “blueprint” for constructing the
S/W
Throughout the design process, the quality of the
evolving design is assessed with a series of formalevolving design is assessed with a series of formal
technical reviews or design walkthroughs
Guide for evaluation of a good design:

The design must implement all of the explicit and implicit
requirements
The design must be readable
The design should provide a complete picture of the
software

Evolution of S/W Design

Development of modular program
Structural programming

Procedural aspect of design definition
Translation of data flow or data structureTranslation of data flow or data structure
into a design definition
OO design

RPL1 - Software Design : Ir. I Gede Made Karma, MT

2

Design Principles

The design process should not suffer from “tunnel
vision” should consider alternative approachs
The design should be traceable to the analysis
model
The design should not reinvent the wheel useThe design should not reinvent the wheel use
design patterns
The design should “minimize the intellectual
distance” between the S/W and the problem as it
exist in the real world
The design should exhibit uniformity and
integration

Design Principles (cont.)

The design should be structured to
accommodate change
The design should be structured to degrade
gently, even when aberrant data, events, or
operating conditions are encounteredoperating conditions are encountered
Design is not coding, coding is not design
The design should be assessed for quality
as it is being created, not after the fact
The design should be reviewed to minimize
conceptual (semantic) error

Fundamental Concepts
Abstraction - allows designers to focus on solving a
problem without being concerned about irrelevant lower
level details (procedural abstraction - named sequence of
events, data abstraction - named collection of data objects)
Refinement - process of elaboration where the designer
provides successively more detail for each design
componentcomponent
Modularity - the degree to which software can be
understood by examining its components independently of
one another
Software architecture - overall structure of the software
components and the ways in which that structure provides
conceptual integrity for a system

Fundamental Concepts (2)
Control hierarchy or program structure - represents the module
organization and implies a control hierarchy, but does not represent
the procedural aspects of the software (e.g. event sequences)
Structural partitioning - horizontal partitioning defines three
partitions (input, data transformations, and output); vertical
partitioning (factoring) distributes control in a top-down manner
(control decisions in top level modules and processing work in the
lower level modules)lower level modules)
Data structure - representation of the logical relationship among
individual data elements (requires at least as much attention as
algorithm design)
Software procedure - precise specification of processing (event
sequences, decision points, repetitive operations, data
organization/structure)
Information hiding - information (data and procedure) contained
within a module is inaccessible to modules that have no need for
such information

Data Abstraction
door

manufacturer
model number
type
swing direction
inserts
lights

implemented as a data structure

lights
type
number

weight
opening mechanism

Data Design
refine data objects and develop a set of
data abstractions
implement data object attributes as one or
more data structures

i d t t t t th treview data structures to ensure that
appropriate relationships have been
established
simplify data structures as required

RPL1 - Software Design : Ir. I Gede Made Karma, MT

3

Procedural Abstraction
open

details of enter
algorithm

implemented with a "knowledge" of the
object that is associated with enter

Stepwise Refinement
open

walk to door;
reach for knob;

open door; repeat until door opensopen door;

walk through;
close door.

repeat until door opens
turn knob clockwise;
if knob doesn't turn, then

take key out;
find correct key;
insert in lock;

endif
pull/push door
move out of way;
end repeat

Modular Design
easier to build, easier to change, easier to fix . Functional Independence

COHESION - the degree to which a
module performs one and only one
function.

COUPLING - the degree to which a
module is "connected" to other
modules in the system.

Cohesion and Coupling Spectrum

Coincidental
Logical
Temporal
Procedural

No direct coupling
Data coupling
Stamp coupling
Control coupling

low low

Communicational
Sequential
Functional

p g
External
Common coupling
Content coupling

high high

Why Information Hiding?
reduces the likelihood of “side effects”
limits the global impact of local design decisions
emphasizes communication through controlled
interfacesinterfaces
discourages the use of global data
leads to encapsulation—an attribute of high
quality design
results in higher quality software

RPL1 - Software Design : Ir. I Gede Made Karma, MT

4

Why Architecture?

The architecture is not the operational software. The architecture is not the operational software.
Rather, it is a representation that enables a software Rather, it is a representation that enables a software
engineer to: engineer to:
(1) analyze the effectiveness of the design in meeting (1) analyze the effectiveness of the design in meeting
its stated requirements, its stated requirements,
(2) id hi l l i h(2) id hi l l i h(2) consider architectural alternatives at a stage when (2) consider architectural alternatives at a stage when
making design changes is still relatively easy, and making design changes is still relatively easy, and
(3) reduce the risks associated with the construction (3) reduce the risks associated with the construction
of the software.of the software.

Architectural Styles

Data-centered architectures
Data flow architectures
Call and return architectures
Object-oriented architectures
Layered architectures

Data-Centered Architecture Data Flow Architecture

Call and Return Architecture Layered Architecture

RPL1 - Software Design : Ir. I Gede Made Karma, MT

5

Deriving Program Architecture

ProgramProgram
ArchitectureArchitecture

Partitioning the Architecture

“horizontal” and “vertical”
partitioning are required

Horizontal Partitioning

define separate branches of the module
hierarchy for each major function
use control modules to coordinate
communication between functions
function 1function 1 function 3function 3

function 2function 2

Vertical Partitioning:
Factoring

design so that decision making and work
are stratified
decision making modules should reside
at the top of the architecturep

workersworkers

decisiondecision--makersmakers

Why Partitioned Architecture?

results in software that is easier to test
leads to software that is easier to maintain
results in propagation of fewer side effects

lt i ft th t i i t t dresults in software that is easier to extend

Design Heuristics for Effective Modularity

Evaluate the first iteration of the program structure to reduce
coupling and improve cohesion.
Attempt to minimize structures with high fan-out; strive for
fan-in as structure depth increases.
Keep the scope of effect of a module within the scope of
control for that module.
Evaluate module interfaces to reduce complexity, reduce
redundancy, and improve consistency.
Define modules whose function is predictable and not overly
restrictive (e.g. a module that only implements a single
subfunction).
Strive for controlled entry modules, avoid pathological
connection (e.g. branches into the middle of another
module)

RPL1 - Software Design : Ir. I Gede Made Karma, MT

6

Structured Design

objective: to derive a program architecture
that is partitioned
approach:

the DFD is mapped into a program architecture
the PSPEC and STD are used to indicate the
content of each module

notation: structure chart

Structured Design (2)

Architectural design
Interface design
Data design
P d l d i / t l l d iProcedural design/component-level design

Architectural Design
Mapping Requirements to Software Architecture

Establish type of information flow (transform flow
- overall data flow is sequential and flows along a
small number of straight line paths; transaction
flow - a single data item triggers information flow
along one of many paths)
Fl b d i i di t dFlow boundaries indicated
DFD is mapped into program structure
Control hierarchy defined
Resultant structure refined using design
measures and heuristics
Architectural description refined and elaborated

Flow Characteristics

Transform flow

Transaction
flow

General Mapping Approach
isolate incoming and outgoing flow isolate incoming and outgoing flow
boundaries; for transaction flows, isolate boundaries; for transaction flows, isolate
the transaction centerthe transaction center

working from the boundary outward, mapworking from the boundary outward, map
DFD transforms into corresponding modulesDFD transforms into corresponding modulesDFD transforms into corresponding modulesDFD transforms into corresponding modules

add control modules as requiredadd control modules as required

refine the resultant program structurerefine the resultant program structure
using effective modularity conceptsusing effective modularity concepts

Transform Mapping

data flow model

a
b

c

d e f g h

i
j

"Transform" mappingx1

x2 x3 x4

b c

a

d e f g i

h j

RPL1 - Software Design : Ir. I Gede Made Karma, MT

7

Factoring

typical "decision
making" modules

direction of increasing
decision making

typical "worker" modules

First Level Factoring

main
program
controller

input
controller

processing
controller

output
controller

Second Level Mapping
D

C

B A

A

main

control

C
B

Dmapping from the
flow boundary outward

Transaction Flow

T

incoming flow

action path

Transaction Example

operator
commands

process
operator
commands

fixture setting

report

fixture
servos

display
screen

robot control

robot
control
software

in reality, other
commands
would also be shown

assembly
record

Transaction Mapping Principles
isolate the incoming flow pathisolate the incoming flow path

define each of the action paths by looking for define each of the action paths by looking for
the "spokes of the wheel"the "spokes of the wheel"

th fl h ti thth fl h ti thassess the flow on each action pathassess the flow on each action path

define the dispatch and control structuredefine the dispatch and control structure

map each action path flow individuallymap each action path flow individually

RPL1 - Software Design : Ir. I Gede Made Karma, MT

8

Transaction Mapping

data flow model

a
b

t

d
e f

g h
i

j
k

l

m
n Mappingx1 Mapping

b

a

t

x2

d e f

x3

g h x3.1

i j

k

x4

l m n

Map the Flow Model
process
operator

commands

command
input

controller

determine
type

read
command

validate
command

produce
error

message

fixture
status

controller

report
generation
controller

send
control
value

each of the action paths must be expanded further

Refining Architectural Design

Processing narrative developed for each
module
Interface description provided for each moduleInterface description provided for each module
Local and global data structures are defined
Design restrictions/limitations noted
Design reviews conducted
Refinement considered if required and justified

Refined Structure Chart
process
operator

commands

command
input

controller

determine
type

read
command

validate
command

produce
error

message

send
control
value

read
fixture
status

determine
setting

format
setting

read
record

calculate
output
values

format
report

fixture
status

controller

report
generation
controller

Architecture Design Assessment Questions

How is control managed within the architecture?
Does a distinct control hierarchy exist?
How do components transfer control within the system?
How is control shared among components?
What is the control topology?
Is control synchronized or asynchronous?Is control synchronized or asynchronous?
How are data communicated between components?
Is the flow of data continuous or sporadic?
What is the mode of data transfer?
Do data components exist? If so what is their role?
How do functional components interact with data components?
Are data components active or passive?
How do data and control interact within the system?

Interfaces Design
Inter-modular interface design

driven by data flow between modules
external interface design

driven by interface between applications
driven by interface between software and non-driven by interface between software and non-
human producers and/or consumers of information

human-computer interface design
driven by the communication between human and
machine

RPL1 - Software Design : Ir. I Gede Made Karma, MT

9

Place User in Control
Define interaction in such a way that the user is not
forced into performing unnecessary or undesired
actions
Provide for flexible interaction (users have varying
preferences)
All i t ti t b i t tibl dAllow user interaction to be interruptible and
reversible
Streamline interaction as skill level increases and
allow customization of interaction
Hide technical internals from the casual user
Design for direct interaction with objects that
appear on the screen

Reduce User Memory Load
Reduce demands on user's short-term
memory
Establish meaningful defaults
Define intuitive short cutsDefine intuitive short-cuts
Visual layout of user interface should be
based on a familiar real world metaphor
Disclose information in a progressive
fashion

Make Interface Consistent
Allow user to put the current task into a
meaningful context
Maintain consistency across a family of
applicationsapplications
If past interaction models have created user
expectations, do not make changes unless
there is a good reason to do so

User Interface Design Models
Design model (incorporates data,
architectural, interface, and procedural
representations of the software)
User model (end user profiles - novice,
knowledgeable intermittent user,
knowledgeable frequent users)
User's model or system perception (user's
mental image of system)
System image (look and feel of the interface
and supporting media)

User Interface Design Process (Spiral
Model)

User, task, and environment analysis and
modeling
Interface design
Interface constructionInterface construction
Interface validation

Task Analysis and Modeling
Software engineer studies tasks human users must
complete to accomplish their goal in the real world
without the computer and map these into a similar set
of tasks that are to be implemented in the context of
the user interface
S ft i t di i ti ifi ti fSoftware engineer studies existing specification for
computer-based solution and derives a set of tasks that
will accommodate the user model, design model, and
system perception
Software engineer may devise an object-oriented
approach by observing the objects and actions the user
makes use of in the real world and model the interface
objects after their real world counterparts

RPL1 - Software Design : Ir. I Gede Made Karma, MT

10

Interface Design Activities
Establish the goals and intentions of each task
Map each goal/intention to a sequence of specific
actions (objects and methods for manipulating objects)
Specify the action sequence of tasks and subtasks
(user scenario) ()
Indicate the state of the system at the time the user
scenario is performed
Define control mechanisms object dan action
Show how control mechanisms affect the state of the
system
Indicate how the user interprets the state of the system
from information provided through the interface

Interface Design Issues
System response time (time between the point at
which user initiates some control action and the
time when the system responds)
User help facilities (integrated, context sensitive
help versus add-on help)help versus add on help)
Error information handling (messages should be
non-judgmental, describe problem precisely, and
suggest valid solutions)
Command labeling (based on user vocabulary,
simple grammar, and have consistent rules for
abbreviation)

User Interface Evaluation Cycle

1. Preliminary design
2. Build first interface prototype
3. User evaluates interface

E l ti t di d b d i4. Evaluation studied by designer
5. Design modifications made
6. Build next prototype
7. If interface is not complete then go to step 3

User Interface Design Evaluation Criteria

Length and complexity of written interface specification
provide an indication of amount of learning required by
system users
Number of user tasks and the average number of
actions per task provide an indication of interaction
ti d ll t ffi itime and overall system efficiency
Number of tasks, actions, and system states in the
design model provide an indication of the memory load
required of system users
Interface style, help facilities, and error handling
protocols provide a general indication of system
complexity and the degree of acceptance by the users

Data Design
Data Design Principles

Systematic analysis principles applied to function and behavior
should also be applied to data.
All data structures and the operations to be performed on each
should be identified.
Data dictionary should be established and used to define both
d t d d idata and program design.
Low level design processes should be deferred until late in the
design process.
Representations of data structure should be known only to
those modules that must make direct use of the data contained
within in the data structure.
A library of useful data structures and operations should be
developed.
A software design and its implementation language should
support the specification and realization of abstract data types.

Component Level Design

The purpose of component level design is to translate
the design model into operational software.
Component level design occurs after the data,
architectural, and interface designs are established.
Component level design represents the software in aComponent-level design represents the software in a
way that allows the designer to review it for correctness
and consistency, before it is built.
The work product produced is the procedural design for
each software component, represented using
graphical, tabular, or text-based notation

RPL1 - Software Design : Ir. I Gede Made Karma, MT

11

Design Notation
Flowcharts (arrows for flow of control, diamonds
for decisions, rectangles for processes)
Box diagrams (also known as Nassi-Scheidnerman
charts - process boxes subdivided to show
conditional and repetitive steps)conditional and repetitive steps)
Decision table (subsets of system conditions and
actions are associated with each other to define
the rules for processing inputs and events)
Program Design Language (PDL - structured
English or pseudocode used to describe
processing details)

Program Design Language Characteristics

Fixed syntax with keywords providing for
representation of all structured constructs,
data declarations, and module definitions
Free syntax of natural language forFree syntax of natural language for
describing processing features
Data declaration facilities for simple and
complex data structures
Subprogram definition and invocation
facilities

Design Notation Assessment
Criteria

Modularity (notation supports development of
modular software)
Overall simplicity (easy to learn, easy to use, easy
to write)
Ease of editing (easy to modify designEase of editing (easy to modify design
representation when changes are necessary)
Machine readability (notation can be input directly
into a computer-based development system)
Maintainability (maintenance of the configuration
usually involves maintenance of the procedural
design representation)

Design Notation Assessment
Criteria (2)

Structure enforcement (enforces the use of
structured programming constructs)
Automatic processing (allows the designer to
verify the correctness and quality of the design)
D t t ti (bilit t t l lData representation (ability to represent local
and global data directly)
Logic verification (automatic logic verification
improves testing adequacy)
Easily converted to program source code
(makes code generation quicker)

RPL1 - Software Design : Ir. I Gede Made Karma, MT

